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CONFERENCE DIRECTOR’S REPORT 
 
Of the first seven conferences, five were held at Bond University on the Gold Coast, one at 

the University of Technology in Sydney during the year of the Sydney Olympics, and the 

last one was in New Zealand at Massey University. This eighth conference in the series 

returns to the Gold Coast, but is longer at Bond University because campus accommodation 

for conference participants is no longer available at that venue. Instead we gather at 

Greenmount Beach Resort, which has been used during the past decade for a number of 

Queensland and Australian Applied Mathematics Conferences. There will be 33 papers 

presented during the days across topics which cover a variety of  individual and team sports 

 

Participants are attending from the United Kingdom, France, Germany, India, New Zealand 

and Australia. Steve Clarke and Neville de Mestre have been to all eight conferences. Tony 

Lewis, of the Duckworth-Lewis formula for determining the winner in rain-affected 

international cricket matches, has been a regular attendee since 1996. It is great to see John 

Norman from Sheffield appear again, as he was at the first conference in 1992. 

 

The Mathsport community wishes to thank His Worship the Gold Coast Mayor and former 

world record holder over middle distances, Ron Clarke, for giving up some of his valuable 

time to officially open the conference. In addition, we are grateful to our Keynote speakers, 

Roger Bartlett (Professor of Sports Science at the University of Otago) and Dr Keith Lyons 

(Head of Performance Analysis at the Australian Institute of Sport) in attending delivering 

their addresses. We hope that all those attending have an enjoyable and rewarding 

interaction in sports science over the next few days. 

 

John Hammond and Neville de Mestre 

 
 



 iii

LIST OF CONFERENCE PARTICIPANTS1 
 

Michael Bailey Michael.Bailey@med.monash.edu.au 
Tristan Barnett TBarnett@groupwise.swin.edu.au 
Roger Bartlett rbartlett@pooka.otago.ac.nz 
Anthony Bedford  anthony.bedford@ems.rmit.edu.au 
Alan Brown  abrown@labyrinth.net.au 
Stephen Clarke  SClarke@groupwise.swin.edu.au 
Uday Damodaran uday@xlri.ac.in 
Neville de Mestre ndemestr@bond.edu.au 
Don Forbes dgforbes@groupwise.swin.edu.au 
Sam Glasson S3028040@student.rmit.edu.au 
Richard Green richard.green@canterbury.ac.nz 
John Hammond  jhammond@scu.edu.au 
Tim Heazlewood t.heazlewood@mackillop.acu.edu.au 
Ros Kerr rfk15@student.canterbury.ac.nz 
Martin Lames martin.lames@sport.uni-augsburg.de 
Tony Lewis ajlewis@brookes.ac.uk 
Keith Lyons Keith.Lyons@ausport.gov.au 
Denny Meyer DMeyer@groupwise.swin.edu.au 
Ken Noble noblesoft@netspeed.com.au 
John Norman  J.Norman@sheffield.ac.uk 
Barbara O’Riley  barbara@eurekabeads.com.au 
Darren O’Shaughnessy darrenos@championdata.com.au 
Matthew Ovens  matthew.ovens@its.monash.edu.au 
Graham Pollard  graham@foulsham.com.au 
Adrian Schembri S3020239@student.rmit.edu.au 
George Serrallach george.serrallach@verusco.com 
Didier Seyfried didier_seyfried@yahoo.fr 
Aaron Silk aaronsilk@hotmail.com 
Richard Smith  

 

                                                 
1 At time of going to press 



 iv

PAPERS OF THE EIGHTH AUSTRALASIAN CONFERENCE ON  
MATHEMATICS AND COMPUTERS IN SPORT  

(in order of presentation – presenters are bolded if multiple authors) 
 
 

CONTENTS (DAY ONE) 
 

KEYNOTE ADDRESS: GREATER THAN THE SUM OF OUR PARTS? Keith 
Lyons………………………………………………………………………………………...1 
 
Analysis and Modelling 
PREDICTION VERSUS REALITY: THE USE OF MATHEMATICAL MODELS TO 
PREDICT ELITE PERFORMANCE IN SWIMMING AND ATHLETICS AT THE 
OLYMPIC GAMES. Tim Heazlewood………………………………………………….2-11 
 
THE USE OF MATHEMATICS AND COMPUTER SCIENCE IN THE ASSIGNMENT 
OF THE OPTIMAL INDIVIDUAL STROKE RATE PARAMETERS IN ELITE 
SWIMMERS. Didier Seyfried.…………………………………………………………12-18 
 
“RESTING TOUCHER”: A TIME AND MOTION ANALYSIS OF ELITE LAWN 
BOWLS. Aaron Silk, Robert Weatherby and John Hammond………………………..19-28 
 
MODELLING THE INTERACTION IN GAME SPORTS – RELATIVE PHASE AND 
MOVING CORRELATIONS. Martin Lames………………………………………….29-34 
 
One-day cricket 
IMPRESS YOUR FRIENDS AND PREDICT THE FINAL SCORE: AN ANALYSIS OF 
THE PSYCHIC ABILITY OF FOUR TARGET RESETTING METHODS USED IN 
ONE-DAY INTERNATIONAL CRICKET. Barbara O’Riley and Matthew 
Ovens………………………………………………….………………………………..35-43 
 
FURTHER STEPS TOWARDS FAIRER PLAYER PERFORMANCE MEASURES IN 
ONE-DAY CRICKET. Tony Lewis……………………………………………………44-57 
 
A MATHEMATICAL MODELLING APPROACH TO ONE-DAY CRICKET BATTING 
ORDERS. Matthew Ovens and Bruce Bukiet…………………………………………58-67 
 
Statistical Applications and Rules 
NAISMITH’S RULE AND ITS VARIANTS. John Norman and Mike Hayes………68-72 
 
STOCHASTIC DOMINANCE AND ANALYSIS OF ODI BATTING PERFORMANCE:  
THE INDIAN CRICKET TEAM, 1989-2005. Uday Damodaran……………………..73-80 
 
STATISTICAL ANALYSIS OF NOTATIONAL AFL DATA USING CONTINUOUS 
TIME MARKOV CHAINS. Denny Meyer, Don Forbes and Stephen Clarke………..81-90 



 v

 

CONTENTS (DAY TWO) 
 
KEYNOTE ADDRESS: ARTIFICIAL INTELLIGENCE IN SPORTS 
BIOMECHANICS: NEW DAWN OR FALSE HOPE? Roger Bartlett………………..91-98 
 
Computer Applications 
THE IMPACT OF INTRODUCING REAL-TIME COMPUTER VISION TECHNOLOGY 
INTO AN ELITE SPORT TRAINING ENVIRONMENT. Ros Kerr………………..99-108 
 
BIOMECHANICALLY OPTIMISED REAL-TIME SYNCHRONISATION OF SKILLS 
IN NOVICE AND EXPERT VIDEO SEQUENCE PAIRS FOR AUTOMATIC 
FEEDBACK OF POSE SHAPE AND PHASE ERRORS. Kwangwu Lee and Richard 
Green………………………………………………………………………………...109-116 
 
Using Mathematics and Statistics in Sport 
PUBLICISING MATHEMATICS AND STATISTICS THROUGH SPORT. Stephen 
Clarke………………………………………………….……………………………..117-121 
 
USES AND MISUSES OF STATISTICS IN TEAM SPORTS: GOALS IN THE BANK? 
George Serrallach……….…………………………………………………………...122-128 
 
REDUCING THE LIKELIHOOD OF LONG TENNIS MATCHES. Tristan Barnett, Alan 
Brown and Graham Pollard………………………………………………………….129-140 
 
Predictions 
A COMPARISON OF COMPUTER AND HUMAN PREDICTIONS OF AFL. Stephen 
Clarke and Rod Clarke………………………………………………….…………...141-149 
 
REAL-TIME PREDICTIVE 3D TRACKING OF CRICKET BALLS FOR KNOWLEDGE 
OF RESULTS AND STRATEGY TRAINING. Hongzhi Gao and Richard 
Green………………………………………………………………………………...150-159 
 
PREDICTING THE MATCH OUTCOME IN ONE DAY INTERNATIONAL CRICKET 
MATCHES, WHILE THE GAME IS IN PROGRESS. Michael Bailey and Stephen 
Clarke………………………………………………………………………………...160-169 
 
Tennis 
COUNTBACK METHODS AND AUXILIARY SCORING SYSTEMS IN TENNIS. 
Graham Pollard and Ken Noble………………………………………………….….170-177 
 
DEVELOPING A TENNIS MODEL THAT REFLECTS OUTCOMES OF TENNIS 
MATCHES. Tristan Barnett, Alan Brown and Stephen Clarke…………………….178-188 
 
FAIRER SERVICE EXCHANGE MECHANISMS FOR TENNIS WHEN SOME 
PSYCHOLOGICAL FACTORS EXIST. Graham Pollard and Tristan Barnett…...189-198 



 vi

CONTENTS (DAY THREE) 
 
Australian Rules Football 
AFL FOOTBALL – HOW MUCH IS SKILL AND HOW MUCH IS CHANCE? Don 
Forbes, Stephen Clarke, Denny Meyer, …………………………………………….199-205 
 
A PROBABILITY BASED APPROACH FOR THE ALLOCATION OF PLAYER 
DRAFT SELECTIONS IN AUSTRALIAN RULES FOOTBALL. Anthony Bedford and 
Adrian Schembri……………………………………………………………………..206-215 
 
A BROWNIAN MOTION MODEL FOR THE PROGRESS OF AUSTRALIAN RULES 
FOOTBALL SCORES. Sam Glasson………….……………………………………216-225 
 
POSSESSION VERSUS POSITION: STRATEGIC EVALUATION IN AFL. Darren 
O’Shaughnessy…………………………………………….………………………...226-238 
 
Methods and Applications of Analysis 
AN ANALYSIS OF TEN YEARS OF THE FOUR GRAND SLAM MEN’S SINGLES 
DATA FOR LACK OF INDEPENDENCE OF SET OUTCOMES. Graham Pollard, Rod 
Cross and Denny Meyer…………………………………………………………….239-246 
 
MAXIMISING HEIGHT, DISTANCE OR ROTATION FROM REAL-TIME ANALYSIS 
VISUALISATION OF TAKE-OFF ANGLES AND SPEED. Richard Green……...247-255 
 
AN ANALYSIS OF GOAL-KICKING ACCURACY IN AUSTRALIAN RULES 
FOOTBALL. Anthony Bedford and Adrian Schembri ……….…………………...256-265 
 
GOLF PUTTING MODELS. Neville de Mestre…..………………………………...266-272 
 
THE APPLICATION OF AN EXPLORATORY FACTOR ANALYSIS TO 
INVESTIGATE THE INTER-RELATIONSHIPS AMONGST JOINT MOVEMENT 
DURING PERFORMANCE OF A FOOTBALL SKILL. Tina Smith, Wendy Gilleard, 
John Hammond and Lyndon Brooks……………………………...…………………273-282 
 
LOW COMPRESSION TENNIS BALLS AND SKILL DEVELOPMENT. John 
Hammond and Tina Smith.…….……..……………………………………………..283-292 
 



 1

GREATER THAN THE SUM OF OUR PARTS? 
 

 

Lyons, K. 

Department of Performance Analysis, Australian Institute of Sport, Canberra 

 
SUMMARY1 

In this paper I explore a vision for the role that mathematics and computers will play in 
applied sports contexts. I propose to use examples from the Australian Institute of Sport to 
do this. 
 
Work undertaken by members of the Mathematics and Computers in Sport community has, 
does and will make an important contribution to elite sport in Australia and New Zealand. I 
argue that there has never been a better opportunity for us to be greater than the sum of our 
parts. 
 
The paper has five sections: 

1. Introduction 

2. The published papers of the Australasian Conferences of Mathematics and 
Computers in Sport. 

3. Developments at the AIS 

4. ‘Interestingness’ 

5. Conclusion 

 
 

                                                 
1 Copies of Keith’s full paper will be available at the conference 
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PREDICTION VERSUS REALITY: THE USE OF MATHEMATICAL MODELS 
TO PREDICT ELITE PERFORMANCE IN SWIMMING AND ATHLETICS AT 

THE OLYMPIC GAMES 
 

Heazlewood, T. 

School of Exercise Science, Australian Catholic University, Strathfield, NSW, Australia 

 
ABSTRACT 
 
A number of studies have attempted to predict future Olympic performances in athletics 
and swimming based on trends displayed in previous Olympic Games. Some have 
utilised linear models to plot and predict change, whereas others have utilised multiple 
curve estimation methods based on inverse, sigmoidal, quadratic, cubic, compound, 
logistic, growth and exponential functions. The non linear models displayed closer fits 
to the actual data and were used to predict performance changes 10’s, 100’s and 1000’s 
of years into the future. Some models predicted that in some events male and female 
times and distances would crossover and females would eventually display superior 
performance to males. Predictions using mathematical models based on pre-1996 
athletics and pre-1998 swimming performances were evaluated based on how closely 
they predicted sprints and jumps, and freestyle swimming performances for both male 
and females at the 2000 and 2004 Olympic Games. The analyses revealed predictions 
were closer for the shorter swimming events where men’s 50m and women’s 50m and 
100m actual times were almost identical to predicted times. For both men and women, 
as the swim distances increased the accuracy of the predictive model decreased, where 
predicted times were 4.5-7% faster than actual times achieved. The real trends in some 
events currently displaying performance declines were not foreseen by the mathematical 
models, which predicted consistent improvements across all athletic and swimming 
events selected for in this study.  
 
 
KEY WORDS  
 
swimming, athletics, olympic games, mathematical functions, extrapolation  
 
INTRODUCTION 
 
The prediction of future athletic performance by humans is a recurring theme during the 
Olympiad year, as well as forming the basis for some stimulating ‘crystal ball gazing’ in 
some of the learned sports science journals and in the mass media. Mathematics and 
science are based on the principles of description and more importantly prediction. The 
ability to make substantive and accurate predictions of future elite level sports 
performance indicates that such approaches reflect “good” science.  Often these 
predictions are purely speculative and are not based upon any substantial evidence, 
rather they are based on the belief that records are made to be broken and that 
performances must continue to improve over time. The accessibility of data in the form 
of results from Olympic Games, world records and world best performances in a 
specific year allows the analysis of performances in any number of events.  From these 
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analyses, changes in performance over time can be observed and predictions of future 
performance can be made utilising the process of mathematical extrapolation. 
 
A number of researchers have attempted to predict future performances by deriving and 
applying a number of mathematical statistical models based on past performances in 
athletics. Prendergast (1990) applied the average speeds of world record times to 
determine a mathematical model for world records.  The records or data used in the 
analysis spanned a 10 year period. Following his analysis, Prendergast (1990) raised the 
question of whether any further improvements can be expected or if the limits of human 
performance have been reached.  The sports of athletics (Heazlewood and Lackey, 
1996) and swimming (Lackey and Heazlewood, 1998) have been addressed in this 
manner and the knowledge of future levels of sporting performance has been identified 
by Banister and Calvert (1980) as beneficial in the areas of talent identification, both 
long and short term goal setting, and training program development.  In addition, 
expected levels of future performance are often used in the selection of national 
representative teams where performance criteria are explicitly stated in terms of times 
and distances (Athletics Australia, 2004).   
 
Some researchers such as Péronnet and Thibault (1989) postulate that some 
performances such as human male 100m sprinting is limited to the low 9 seconds, 
whereas Seiler (referred to by Hopkins, 2000) envisages no limits on improvements 
based on data reflecting progression of records over the last 50 years. According to 
Seiler improvements per decade have been approximately 1% for sprinting, 1.5% for 
distance running, 2-3% for jumping, 5% for pole vault, 5% for swimming and 10% for 
skiing for male athletes, whereas female sprint times may have already peaked. The 
differences for males and females it is thought to reflect the impact of successful drugs 
in sport testing on females.  
 
The predictions of Heazlewood and Lackey (1996) paradoxically predicted the men’s 
100m to improve to zero by year 5038 and the women’s 100m to reach zero by year 
2429, which indicates a more rapid improvement over time for women sprinters. In their 
model (Heazlewood and Lackey, 1996), the women’s times would be faster than men 
by 2060 where it was predicted the finalist at the Olympic Games would average 9.58s 
for men and 9.57 for women respectively. A similar crossover effect, where predicted 
female performances would exceed male performances, was noted for the 400m and 
high jump. The crossover effect was based on trends in athletic performances obtained 
prior to 1996; where in some events female improvements were more rapid than males. 
 
In the sport of swimming (Lackey and Heazlewood, 1998), a similar crossover effect 
was observed for the 50m freestyle where predicted zero time was the year 2994 for 
men and 2700 for women. The concept that athletes will complete 100m sprints on land 
and 50m sprints in water in zero seconds appears unrealistic, however mathematical 
model based on actual data do derive these interesting predictions.  
 
The curves that fit the data have also displayed interesting findings as no one curve fits 
all the data sets. Different events displayed different curves or mathematical functions 
(Lackey and Heazlewood, 1998) of best fit. In swimming the men’s 50m freestyle was 
inverse, 100m freestyle compound, 200m sigmoidal, and the 400m and 1500m freestyle 
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cubic. For the women’s freestyle events the 50m was inverse, 100m cubic, 200m 
sigmoidal, 400m cubic and 800m sigmoidal.    
 
In athletics for the men’s events the mathematical functions (Heazlewood and Lackey, 
1996) were 100m inverse, 400m sigmoidal, long jump cubic and the high jump 
displayed four functions (compound, logistic, exponential and growth). In the women’s 
events the mathematical functions were 100m cubic, 400m sigmoidal, long jump 
inverse and high jump displayed four functions (compound, logistic, exponential and 
growth). This may indicate that different events are dependent upon different factors 
that are being trained differently or factors underpinning performance evolving in 
slightly different ways. This has resulted in different curves or mathematical functions 
that reflect these improvements in training or phylogenetic changes over time.  
 
However, at some point in time how accurately the predictive models reflect reality can 
be assessed. Since the models of Heazlewood and Lackey (1996) for athletics and 
Lackey and Heazlewood (1998) for swimming were derived, the 2000 and 2004 
Olympic Games have occurred. Hindsight or real data can now enable the assessment of 
these models over a short timeframe, that is, 8-10 years. Assessing the accuracy of the 
models predicting performances hundreds or thousands of years into the future will be 
based on the research interests of future mathematicians, sports scientist and computer 
scientists.   
 
The current research problem is how well the actual times and distances achieved by 
athletes at the 2000 and 2004 Olympic Games fit the predicted model for athletics and 
swimming based on the Heazlewood and Lackey (1996) and Lackey and Heazlewood 
(1998) prediction equations?  
 
METHODS 
 
The previous models were based on following model fit criteria used by Heazlewood 
and Lackey (1996) for athletics and Lackey and Heazlewood (1998) for swimming. The 
average time and distances for the finalist in each event were utilised to generate the 
data for the statistical analysis for curve estimation. Potentially both linear and non 
linear functions can be derived. The mean score of the actual performances from the 
2000 and 2004 Olympic Games finalists were compared with the predicted values in the 
athletic events selected in this study (Wikipedia, 2006). Times for the 100m and 400m 
were in seconds and distances for the long and high jump were in metres.   

The results for the finalists in current Olympic freestyle swimming events (50m, 100m, 
200m, 400m, 800m women and 1500m men) were collected from internet based results 
(Wikipedia, 2006).  Times were recorded to one hundredth of a second which is the 
recording method used by Federation Internationale de Natation Amateur or FINA 
(1997).  These times were then converted from a minutes and seconds format to a 
seconds only format to facilitate calculations when applying the regression methods.  
The mean of the finalists in each event for each year in the study was then calculated.  
The mean was used as it is a measure that is representative of all scores in each group 
(Rothstein, 1986).  The use of the mean of the finalists in this study may be more 
representative of the changes in human performance that world records as used by Jokl 
and Jokl (1976a, 1976b, 1977) and Edwards and Hopkins (1979).  A world record 
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holder’s performance may be far in advance of that of any other competitor and not be 
representative of overall performance in an event.  For example, the women’s 400m 
freestyle world record as set by Tracey Wickham in 1978 was not bettered until 1988 at 
the Seoul Olympic Games (Wallechinsky, 1996). 
 
In the swimming pool the factor of wind resistance is not considered significant and as 
such wind readings are not required for swim records. In athletics assistive and resistive 
winds are thought to influence performance in events such as the 100m and long jump 
and the wind variable can be corrected to assess performance in still air conditions. The 
wind correction calculations are not presented in this paper just the times and distances 
reported for the athletic events, however correcting for the influence of wind may result 
in slightly different values for the original data.  

The means were then included as a data set for each event for each Olympic Games for 
analysis using the Statistical Package for the Social Sciences (SPSS) program version 
6.1 (Norušis, 1993 & 1994) to derive a number of possible regression equations. A 
number of criteria were used to evaluate the goodness of fit of each derived function for 
each individual event. 

General Method of Determining the Appropriate Regressions Models 
To investigate the hypotheses of model fit and prediction, the eleven regression models 
were individually applied to each of the athletic and swimming events.  The regression 
equation that produced the best fit for each event, that is, produced the highest 
coefficient of determination (abbreviated as R2), was then determined from these eleven 
equations. The specific criteria to select the regression equation of best were the 
magnitude of R2, the significance of the analysis of variance alpha or p-value and the 
residuals. 

The Coefficient of Determination 
The coefficient of determination (R2) is a measure of accuracy of the model used.  A 
coefficient of determination of 1.00 indicates a perfectly fitting model where the 
predicted values match the actual values for each independent variable (Norušis, 1993 
& 1994).  Where more than one model was able to be selected due to an equal R2, the 
simplest model was used under the principle of parsimony, that is, the avoidance of 
waste and following the simplest explanatory model. 

Residuals 
The residuals are the difference between the actual value and the predicted value for 
each case, using the regression equation (Norušis, 1993 & 1994) and the smaller the 
residual, the better the fit of the model.  For each model the residuals were generated by 
the SPSS program.  A large number of positive residuals indicate that the prediction is 
an over estimation (faster than the actual performance) and a large number of negative 
residuals indicates an underestimation (slower time than the actual performance). 

Level of Significance 
The level of significance, or p value, is a representation of the relationship between the 
model and the data.  The smaller the p value, the higher the level of significance and the 
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greater the relationship where a small p value indicates a small possibility that the 
closeness of the predicted values to the actual values due to chance is small. 

Logical Acceptance Based on Extrapolations 
The ability of the model to generate extrapolations that appear to be reasonable when 
compared to previous means was also taken into consideration.  When a model 
generated extrapolations that appear to be inconsistent with the actual results this model 
was discarded and the model with the next highest coefficient of determination was 
selected. 

Applying the Model of Best Fit 
After selection of the model to be used, according to the criteria previously stated, the 
equation of best fit was determined by applying the derived constants and coefficients to 
the generic formula for that model.  Using this equation, a prediction of the mean result 
for the event at each Olympiad was calculated.  At this stage, graphs representing the 
means of past and future performances for each event in each Olympiad were also 
generated in addition to predicted means using the appropriate regression equation. 

Final Predictions for the Year 2000 and 2004 
To predict the level of performance in the year 2000 and 2004, the data set that provided 
the greatest accuracy was chosen and the data from 1996 re-included in the data set, 
where appropriate.  A series of regressions were made using the best fitting model and 
data set for each event.  Using the constants and coefficients generated by regression 
models the future predictions were then calculated. 
 
It is important to note that in some events the average for a complete field of 
competitors was not always possible due to disqualifications or injury. In the case of 
injury a competitor did not finish the event. This situation only occurred in a few events. 
At this point in time no attempt was made to re-evaluate the 1996 and 1998 models 
based on inclusion of 2000 and 2004 data.   
 
RESULTS 
 
The data for the predicted values and the actual values are provided in the table for each 
event. Table 1 indicates the events, mathematical functions, equations and R2 values 
derived from the Heazlewood and Lackey (1996) for athletic events of the men’s and 
women’s 100m, 400m, long jump and high jump.    
 
The trends in the mathematical functions indicate the men’s and women’s 400m and the 
high jump show identical trends in changes in performance over time, where the 400m 
was sigmoidal and the high jump was compound, logistic, exponential and growth. In 
the majority of events the explained variance or R2 values were statistically very 
significant (p<0.01). It is interesting to note the R2 values were highest for the men’s 
and women’s high jump (0.94) and lowest for the men’s 100m (0.66) and men’s long 
jump (0.78).  
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Table 1. Athletic events, type of mathematical function, equations and r2  values. 

Event Regression 
Type 

Equation * R2** 

Men’s 100m Inverse Y = b0 + (b1/t) 0.659 
Women’s 100m Cubic Y = b0 + b3t3 0.902 
Men’s 400m S Y = e(bo + b1/t)  0.907 
Women’s 400m S Y = e(bo + b1/t) 0.843 
Men’s Long Jump Cubic Y = b0 + b3t3 0.777 
Women’s Long Jump Inverse Y = b0 + (b1/t) 0.894 
Men’s High Jump Compound 

Logistic 
Exponential 
Growth 

Y = b0(b1)t 
 
Y = b0eb1t 
Y = ebob1t 

0.944 
0.944 
0.944 
0.944 

Women’s High Jump Compound 
Logistic 
Exponential 
Growth 

Y = b0(b1)t  
 
Y = b0eb1t 
Y = ebob1t 

0.947 
0.947 
0.947 
0.947 

** All R2 values in table 1 significant at p<0.05.  
*   Where  b0 = a constant 
         b1, b3 = regression coefficients 
         t = year 
         y = mean result for each event 
 
Table 2 indicates the predicted performances and the actual performances achieved 
from the 2000 and 2004 Olympics Games. It can be observed that both 100m times for 
men exceeded the prediction, whereas the female 100m times were well below the 
predicted values. For the 400m, long jump and high jump both male and female athletes 
were below the predicted time and distances. However, the men’s actual 400m times 
and long jump distances did show improvements from 2000 to 2004. In the women’s 
400m there was a performance decline and in the women’s and men’s high jump 
performances remained relatively static from 2000 to 2004. 
 

Table 2. The predicted and actual performances for men’s and women’s 100m, 400m, 
long jump and high jump for 2000 and 20004 Olympics. 

 

Year 

Predict 

100M 100W 400M 400W MLJ WLJ MHJ WHJ 

2000 10.07s 10.84s 43.84s 48.29s 8.36m 7.27m 2.42m 2.05m 

2004 10.03s 10.76s 43.63s 47.78s 8.43m 7.39m 2.45m 2.09m 

Year 
Actual 

100M 100W 400M 400W MLJ WLJ MHJ WHJ 

2000 10.05s 11.15s 44.92s 49.92s 8.26m 6.80m 2.32m 1.98m 

2004 9.93s 11.04s 44.67s 50.00s 8.33m 6.92m 2.31m 1.98m 
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The mathematical models derived for swimming from pre-1998 data (Lackey and 
Heazlewood, 1998) for the men’s and women’s 50m, 100m, 200m, 400m, women’s 
800m and men’s 1500m freestyle events are displayed in table 3. The functions for the 
50m (inverse), 200m (sigmoidal) and 400m (cubic) are the same for both men and 
women, however the functions for the 100m (men compound and women cubic) and the 
longer distances displayed their own specific function (800m women sigmoidal and 
men 1500m cubic).  The non significance for the men’s and women’s 50m freestyle 
equations and R2 values is a result of the small degrees of freedom when calculating the 
level of significance, due to the 50m freestyle only being included in the Olympic 
swimming program from 1988.  
 

Table 3. Men’s and women’s freestyle swimming events, type of mathematical function 
and predictive equations. 

Gender Event Type Equation R2 

value 
Men 50m Inverse y year= − +44 77 134064199. . /  0.543 

ns 
 100m Compound y year= ×42747 22 99. .  0.972 

sig 
 200m Sigmoidal y e year= − +1 33 11971 98. . /  0.862 

sig 
 400m Cubic y year year= − × + × ×−1257261 879 653 107 3. . .  0.977 

sig 
 1500m Cubic y year year= − × + × ×−4045713 2731 188 106 3. . .  0.963 

sig 
Women 50m Inverse y year= − +7168 193578. /  0.732 

ns 
 100m Cubic y year year= − × + × ×−741711 548 45 10 7 3. . .  0.959 

sig 
 200m Sigmoidal y e year= − +0 54 8451 02. . /  0.812 

sig 
 400m Cubic y year= − × ×−1565 168 10 7 3.  0.976 

sig 
 800m Sigmoidal y e year= − +1 26 14938 8. . /  0.692 

sig 
ns due to the small degrees of freedom  
sig. at p<0.05 
 
 
The comparison of the predicted times with the actual times for each event and 
displayed in table 4, indicates congruence for the men’s 50m and women’s 50m and 
100m. In all other events for both men and women the predicted times are faster than 
actual times, indicating rate of progress in these events appears to have slowed down 
based on data up to 1996. This indicates the prediction equations over estimated the 
rates of improvement.  
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The predictions were closer for the shorter swimming events where men’s 50m and 
women’s 50m and 100m, where actual times are almost identical to predicted times. In 
both men and women, as the swim distances increased, the accuracy of the predictive 
model decreased, where predicted times were 4.5-7% faster than actual times achieved. 
For example, the predicted men’s 1500m of 489.03s for 2004 was 7% faster than the 
actual time of 509.06s. 

Table 4. Actual 1996 means, predicted and actual means for 2000 and 2004 Olympics. 
All times are in seconds. 

Event  Actual 
1996 

Predicted/Actual 
2000 

Predicted/Actual 
2004 

Men’s  50m Freestyle 22.47 22.26/22.19 22.13/22.11 
 100m Freestyle 49.31 48.17/48.95 47.53/48.80 
 200m Freestyle 108.40 105.57/107.43 104.32/106.47 
 400m Freestyle 230.57 219.03/226.21 215.29/225.92 
 1500m Freestyle 910.29 854.72/901.67 835.76/898.05 
Women’s 50m Freestyle 25.37 25.11/25.01 24.91/24.96 
 100m Freestyle 55.37 54.81/54.76 54.53/54.58 
 200m Freestyle 119.95 117.90/118.89 116.91/118.69 
 400m Freestyle 250.00 238.98/249.46 233.91/248.05 
 800m Freestyle 514.89 496.38/507.82 489.03/509.06 

 
DISCUSSION 
 
The results indicate the ability to predict performances into the near future based on past 
performances is possible, however both sets of results derived from athletics and 
swimming indicate that in many events the improvements in performances were 
overestimated. Although improvement in the majority of athletic and swimming events 
studied did occur in absolute times or distances, the rate of improvement was slower 
than predicted by the numerous equations generated. The reality is, in some events 
performances have been static such as men’s and women’s high jump and women’s 
200m freestyle or actually declined such as women’s 400m and women’s 800m 
freestyle. The two events where actual performances exceeded, very slightly the 
predicted performances, were the men’s 100m and men’s 50m freestyle.  
 
Recent emphasis on successful drug testing may have impacted more on women 
athletes than men, where the slowing down, and in some cases the declines in actual 
performances were noted for women.   
 
Performances are expected to improve over a period of time due to a number of 
interacting sports scientific, ontogenetic (lifespan) and pharmacological factors, such as: 
 
1. The use of more efficient running, jumping and swimming techniques, a 

biomechanical construct. 
2. Improved training programs, which are exercise physiological and functional 

anatomical construct. 
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3. Enlarged population of athletes due to increased participation by more nations from 
which high performance athletes and swimmers are drawn. This will result in an 
increased sample from the human gene pool, a genetic construct. 

4. Improved talent identification programs designed and implemented by national 
sporting organisations and sports institutes that will select and develop tomorrow’s 
high performance athletes.  

5. Changes in human physiology, such as the recent ontogenetic trends of increasing 
height and weight in Australia.  

6. The use of performance enhancing drugs legal or illegal, especially androgenic- 
anabolic steroids and human growth hormone, which have a masculinising effect on 
women or the use of neutraceuticals (functional foods). 

 
However, the exact mathematical trends these improvements and interactions take can 
be plotted mathematically to reveal future trends across athletic and swimming events. 
In effect, the actual performance is a summary of all these factors. In some cases the 
event can be predicted with a high degree of accuracy, such as the sprint swimming 
events for both men and women, whereas in other events such as 400m women and 
800m freestyle are not predicted well as the events are currently displaying performance 
declines which were not identified by the mathematical models. It must be emphasised 
that all the models across all events indicated consistent improvements over time. 
 
The primary purposes behind this type of predictive research are that we might 
understand the realistic limits to human improvement in many sports, to set new and 
realistic goals that athletes will have to achieve to make representative teams and 
Olympic finals, to provide a more coherent understanding of what performances of the 
past suggest about performances of the future, to understand if different events represent 
changes which reflect developments of human biomechanical, exercise physiological, 
motor learning and sport psychological functions as expressed in sport;  and as a 
intellectual exercise to understand more completely the complex trends that underpin 
human evolution and training adaptation that are expressed in the sports arena.  
 
CONCLUSION 
 
As a heuristic exercise the derivation of mathematical-statistical models that predict 
changes in human sporting performance both in the near and distant future occupies 
definitely the minds of mathematicians and statisticians and if “we get it right” we will 
have a crystal ball into the future of sport. The problem is it just takes time to find out 
how good we are at solving such problems.  
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ABSTRACT 

Looking to measure the spontaneous frequency of swimming to take advantage of it in 
an applied way for better learning (for the swimmer) and better teaching (for the coach) 
has been a method used since 1991 at the National Institute of Sport, Paris (INSEP) 
since it has appeared to be most effective in terms of swimming economy. A good 
number of mathematical relationships found between the speeds obtained on clean 
swimming but equally on non-swim areas (starts, turns, underwater part) can be a 
source of potential help to the individual swimmers if they can be calculated. Among 
them the stroke rate/velocity relationship is very interesting since its mastering has a lot 
of consequences on energy cost, delay of fatigue and better learning of the best stroke at 
any moment in training or competition. This starting point guided the development of 
several types of software beneficial to swimming training including NATAVIT (1995-
2000) and AQUACYCLE (since 2000) but equally a concept of measurement 
automated in training (CHRONOCYCLE) and finally, a video-electronic system which 
is used in competition by the French Swimming Federation. 
 
KEY WORDS 

modelling, swimming, cadence, velocity, stroke length, feed back 

 
INTRODUCTION  

Looking to take the spontaneous frequency of activity to take advantage of it in an 
applied way for better learning (for the swimmer) and better teaching (for the coach) 
has been an objective since 1991. In swimming, the spontaneous stroke rate/velocity 
was at first an indicator then became a systemized test from 1995. It is used in many 
countries, notably in swimming to determine if the rate and by result, the distance per 
stroke, also called stroke length, used by a swimmer at a given moment in his swim (in 
training or competition) is the most effective in terms of economy. 
 
MATHEMATICS AS A TRAINING TOOL 

Transforming the observations obtained from swimmers during previous evaluations to 
create more specifically their future training sessions is the goal for most physiologists. 
A good number of mathematical relations found between the obtained speeds on clean 
swimming but equally on non-swim areas (starts, turns, underwater part) can be a 
source of potential help to the individual swimmers if they can be calculated. Among 
them, the stroke rate/velocity relationship is very interesting since its mastering has 
many consequences on energy cost, delay of fatigue and better learning of the best 
stroke at any moment in training sessions or competitions. This starting point guided the 
development of several types of software beneficial to swimming training including 
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NATAVIT (1995-2000) and AQUACYCLE (since 2000) but equally a concept of 
measurement automated in training (CHRONOCYCLE) and also a video-electronic 
system is used in competition by the French Swimming Federation. 
 

 
Figure 1 

In France and at INSEP in particular, the choice of a kinetic study of cyclic parameters 
evolving within useful swim velocities was at the origin of a hypothesis to test the 
relationship between stroke rate and velocity. This was confirmed through the 
development of standards for this test and through the use of various methodologies and 
tools. The applied usage in training of these tests was carried out through the use of 
individual test results established using tables (Microsoft Excel), then on programmable 
machines (from 1992 to 1996), leading the French Swimming Federation (FFN) to ask 
INSEP to develop a specific software NATAVIT. This software allowed from data 
obtained in tests at the National Training Centre, the computerized mastering of the 
accurate individual velocities of swims, with indications for the best cyclic, 
physiological and technical methods. 
 
THE SYSTEM OF EVALUATION AND FOLLOW UP IN TRAINING  

The stroke rate/velocity incremental test involves observing 15 m of clean swimming 
during 8 progressive steps where 3 full cycles are measured considering the time and 
the spontaneous stroke rate of the swimmer. It allows every swimmer to be given 
theoretical cyclic parameters vs. observed ones during future sessions. Theoretical 
Stroke Length (TSL) vs. Observed Stroke Length (OSL), Theoretical Stroke Rates vs. 
Observed Stroke Rates (OSR) and even Theoretical Stroke index (TSI) vs. Observed 
Stroke index (OSI), are all good factors to take into account in terms of swimming 
economy during the observations of training sessions and races.  
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Figure 2: Individual linear relationships between velocity, stroke rate & stroke length 

 
EXAMPLES OF APPLICATIONS IN TRAINING 

 
Figure 3: Observed Stroke rates, Stroke lengths and stroke indexes compared with 

theoretical individual model. 

Different methods can help optimise the management of the cyclic fitting parameters to 
the velocity of the corresponding swims. The example of the relationship between 
stroke rate and the velocity of swims seems to be the most striking. After determining 
the equation rate velocity TSR (ideal individual stroke rate), this can be integrated into 
software or computer devices (programmable machine, software on computers or PAD) 
and will use the swimming economy index for the calculation of the ideal cyclic 
parameters for all the times, for all distances and size of pool and of given send-offs. 
This system provides a cyclic and technical example with the swimmer immediately 
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after each series. Recent developments (AQUACYCLE) allow as well the possibility 
for the swimmer to self-evaluate simply in terms of «arm hits» : checking the clock and 
counting the arm stokes is enough for better learning. These methods allow the 
swimmer to refine his or her mastery of spatial-mental skills, a critical step in the 
control of the cyclic parameters relating to velocity of swims. These situations where 
objective information is given during or immediately after the end of the exercise are 
essential for the education of swimmers. This is particularly useful in long distance 
swimming where the instruction or feedback during the exercise contributes to the 
learning curve necessary to maintain the stability of the energy cost. 
 

Constant pace is a strategy that has been proven in terms of swimming economy and 
most notably in records surpassed; nevertheless, there are often other strategies that 
prove themselves essential to winning at championship meetings where the individual 
athlete is confronted with the primary objective of being on the podium. A faster start or 
accelerating at the right moment must have also been worked on in training; but to start 
faster does not necessarily mean a ‘breakthrough’ in attempting to go for broke, i.e. 
taking a strategic risk, using specific techniques, in a way adapted to the immediate 
needs of the swimmer. The mastery of the relationship between stroke rate and velocity 
allows working towards swimming at a constant speed and to a stable rhythm, to adapt 
with better effectiveness to all likely velocities used by the swimmer. The acquisition of 
biomechanical indicators by trial and error across the spectrum of velocities allowing 
the movement in water, with « feedback » in the fastest possible manner on execution 
will probably be a learning curve for the elite swimmer in the years to come. 

 
Figure4: Real Time display of Velocity, Stroke Rate, and Stroke Length as well as the 

Stroke Rate/Velocity Relation. 

To learn how to manage precisely the cyclic parameters imposes on the coach an 
observation zone of 15 m., measured with precision, where three complete cycles of 
swims can be studied with a stopwatch with stroke rate function. To be pertinent, the 
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calculations of distance per stroke and of the swimming index must be carried out from 
the speed of swims measured in this zone. To facilitate these measurements, computer 
software was recently developed to immediately determine the relationship between 
stroke rate and velocity of the swimmer in practice. Software has been produced to 
record from a direct capture or of a video file that one can see in one of the windows of 
the application. The capture was tested with a click of the mouse, keyboard, and an 
external remote control to the PC radio HF but it can receive all types of triggers to the 
system (sensors, automatic recognition of pictures, light signals, sound cues). 
 

DISCUSSION 

The linear adjustments of the relationship of stroke rate/velocity and stroke 
length/velocity are more highly correlated as the level of expertise of the swimmers is 
increased. It is normal in physics because linked to drag that the stroke length 
diminishes in a manner inversely proportional to velocity according to a linear 
mathematical relationship. The swimmers seem insufficiently educated in this approach. 
The observation of swimmers in competition indicates unnecessarily high stroke rates in 
comparison with their individual demonstrated ideal economy of swims for the given 
velocity. The confusion between ‘velocity and turn over’ is all the more natural under 
the stresses of competition. This is the reason why it must be checked and practiced in 
training and in competition. From exchanges with T.M. Absaliamov, the long time 
expert in charge of the studies on Soviet then Russian swimmers, we reinforced the fact 
that pace regularity and stroke rates of Salnikov or of Sadovy, the technical 
management of race of Popov, had been obtained by practice and were the fruit of very 
elaborate feedback. In France, the number of repetitions at race velocity, while doing 
the report on the cyclic parameters is more and more used with the swimmers. Work at 
sub-maximal speed deserves equally to be given to swimmers with a reference to cyclic 
objectives, for example a number of arms strokes by length according to the speed of 
the swimmer.  
 

CONCLUSION 

Our evaluations show that for all the swimmers improving their times at INSEP over 
several years, the two values of stroke rate and race pace still evolve in the direction of 
an increase in the distance per stroke and of a decrease in the rate. Nevertheless, only 
the improvement of performance in times must remain the objective. The increase of the 
distance per stroke for a velocity of given swims (and therefore the proportional 
decrease of the rate) is only interesting if the swimmer preserves the same « potential of 
rate » throughout his or her career to attain a race pace which always improves in 
competition. The analysis taken from systematic measurements done in national and 
international competitions has also allowed the French team to be able to take 
advantage of the real-time evaluations from the last Athens Olympic Games and the 
Montréal World Championships since the French system was kept as the official 
analysis of FINA. For these two major competitions, the possibility to observe race 
strategies and capacities of the current best world class swimmers and to put them side 
by side with the French hopefuls in the same tests is rich in terms of immediate analysis 
and forecast. The comparisons then study of the stroke rates, on the data from both 
swimming and non-swimming parts, calibration of the velocities throughout the race 
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and so on, are important in the strategic aims of a federation that emerges from here 
onwards as being amongst the nations able to produce champions on a world level. 
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ABSTRACT 
Whilst numerous investigations have explored the physical demands placed upon 
competitive sportspeople from a wide array of sports little is known about the physical 
demands placed on lawn bowlers. The purpose of this study was to ascertain the 
movement activities of Australian representative singles and pairs players and to 
determine the frequency and duration of these activities. One match each of two male 
and two female players (one singles and one pairs player per gender) were videotaped 
during an international tournament. During playback of the videotaped matches (n=4), a 
single observer coded the players’ activities into five distinct categories (waiting, 
walking forward, walking backward, jogging and bowling) using a computerised video 
editing system (Gamebreaker™ Digital Video Analysis System). Field calibration of 
players over 30m for forward motions and 15m for the backward motion was performed 
to allow for the estimation of total distance covered during the match. Heart rate was 
monitored during each match. The duration of a match was found to be (mean±SD) 1hr 
28±15mins. The total distance covered during each match was 2093±276m. The mean 
percentage of match time spent in each motion was: waiting, 61.8±9.3%; walking 
forward, 22.3±5.6%; walking backward, 2.0±0.4%; jogging, 1.1±0.5%; and bowling, 
8.5±4.2%. Average heart rate was found to be 57±7% of age-predicted HRmax with a 
maximum of 78±9% of age-predicted HRmax. The results of this study suggest that 
playing lawn bowls at an international level requires light-moderate intensity activity 
similar to that reported for golf.  
 
KEY WORDS 
frequency, mean duration, heart rate, energy expenditure. 

 
INTRODUCTION 

The modern game of Lawn bowls has its origins in England early in the 13th Century. A 
similar game is reported to have been enjoyed by Ancient Egyptians, the Aztecs, North 
American Indians, and also in China and Polynesia. Lawn bowls is predominantly a 
game of skill but there is also a physical component necessary for its performance. This 
is also true for other so called “target sports” such as archery, golf, shooting and ten-pin 
bowling. An analysis of golf participation indicated that over the course of an 18-hole 
round mean heart rate was 108 beats/min, equating to 35-41% of maximal oxygen 
capacity (Murase et al., 1989) although this intensity has been reported to increase with 
the age of the player (Brohman et al., 2004). Numerous other competitive sports have 
been analysed for the physical component to investigate the demands placed on 
participants. Team sports such as rugby union (Duthie et al., 2005), soccer (Krustrup et 
al., 2005) and field hockey (Spencer et al., 2004) have been analysed by time and 
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motion studies to elucidate the physical demands of playing the sport. Sporting officials 
from rugby league (Kay and Gill, 2003), soccer (D’Ottavio and Castagna, 2001) and 
rugby union (Martin et al., 2001) have also been the target of time motion analyses. The 
information obtained from previous time and motion studies has been used to tailor 
specific conditioning programs for participants and also to develop sport-specific field 
tests. No such investigation has been carried out for Lawn Bowls. 
 
The sport of lawn bowls is played on a bowling green, a level grass covered surface 
with dimensions approximately 40m x 40m (Judson, 2004). A game of lawn bowls is 
played on a rink, a demarcated strip of a bowling green, denoted by pegs at either end, 
usually between 5.5 and 5.8 meters wide (Judson, 2004) allowing several games of lawn 
bowls to be played concurrently on the same green. Singles, pairs, triples and fours 
games are played in accordance with the number of players constituting a team. Specific 
rules are followed concerning the number of deliveries allowed each player and when 
play is to end and a winner emerge. Players, and teams, alternately deliver their biased 
bowls down the green towards a small white non-biased bowl called the jack with the 
aim of having as many bowls as possible closer to the jack than their opponent. One 
point is awarded for each bowl closer to the jack than any opposing bowls. The 
direction of play reverses for successive ends, each of which follows the sequence of 
laying a protective mat, delivering the jack and delivering the allowable number of 
bowls, in turn. The current format for international level competitive bowls sees 
matches played over 2 sets of 9 ends with 4 bowls per player for singles matches and 2 
bowls per player for pairs and triples.  
 
The work reported here analysed the movement activities of Australian representative 
singles and pairs players and obtained some preliminary data on the physical demands 
on players at this level of competition. 
 
METHOD 
Subjects: Four Australian representative lawn bowlers gave their informed consent to 
participate in this research. Two males aged 29yrs and 26yrs with body masses of 113kg 
and 69kg respectively and two females aged 44yrs and 31yrs with body masses 70kg 
and 67kg participated.  
Stride calibration: Prior to filming a stride calibration was conducted to ascertain stride 
length and movement velocity during the motion categories of walking (forward and 
backward) and jogging. This calibration was done over a 30m distance for walking 
forward and jogging and 15m for walking backward. This information was used to 
estimate distance covered during the match.  
Games analysis: The matches that were analysed were played at the Tri-Nations Cup 
tournament between Australia, New Zealand and Malaysia that was held in Melbourne 
(Darebin International Sports Centre) Australia between the 31st January and 2nd 
February 2006. 2 singles matches (1 men’s and 1 women’s) and 2 pairs matches (1 
men’s and 1 women’s) were recorded for analysis. The skips of the pairs combinations 
were filmed and used for analysis. During matches the on-green motion of players was 
captured by a video camera (Panasonic Model No.NV-GS150GN, Matsushita Electrical 
Industrial Co. Ltd. Japan) with a moveable field of vision. The camera was positioned at 
the side of the green that was closest to the rink on which the match was being played. 
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Player movement was followed for the duration of the match. Footage was recorded 
onto miniDV tapes (Panasonic DVM80, Matsushita Electrical Ind. Co. Ltd. Japan).  
Player motion was subjectively characterised by an experienced operator while 
watching the video playback. A software analysis program (Gamebreaker™ Digital 
Video Analysis System, Sportstec Pty Ltd, Australia) was used to quantify each motion 
category. Video footage of the matches (n=4) was viewed and concurrently 
characterised by activating motion category buttons when a motion started and 
deactivating them when that motion ceased. This allowed the duration of each 
individual motion to be logged. At the completion of the analysis an output was 
obtained that detailed each motion category. This output included, for each of the five 
motion categories, the motion frequency, total time of motion during the match, motion 
as % of total match time and mean motion duration.  
Motion categories: Player motions were coded into five different categories and were 
defined as follows: 

1. Waiting: motionless or milling around the head or behind the mat (includes such 
activities as picking up bowls, shuffling feet, organising bowls, filling out 
scorecard, pacing, waiting to bowl, watching own bowl, inspecting the head, 
watching opponents bowl, and getting a drink). 

2. Walking forward: forward motion with both feet in contact with the ground at 
same time during some point in the gait cycle. 

3. Walking backward: backward motion with both feet in contact with the ground at 
same time during some point in the gait cycle. 

4. Jogging: motion with an airborne phase. 
5. Bowling: motion involved in delivering a bowl. 

Heart rate monitoring: Players agreed to wear a heart rate monitor during the matches 
that they were filmed playing. The equipment used for recording heart rate constituted 
wearing an elasticised transmitting strap around the chest and a watch on the wrist 
(Polar Model No.S610, Polar Kempo, Austria). Average heart rate was recorded for 
each 15 second period of match time. The raw data that was collected was converted to 
the percentage of age-predicted maximum heart rate (HRmax). Age-predicted maximum 
heart rate was calculated using the equation HRmax = 220 – age.  
Reliability data: Player motion from the first set (9 ends) of each match (n=4) was 
analysed at three different times over a 10 day period to establish intra-tester reliability. 
The average duration of this footage was 44±2.5min. These times were Day 1 (1), Day 4 
(2), and Day 10 (3). The viewing order of the four matches was randomised using a 
Latin Square design. A bivariate correlation (Pearson Correlation – 2 tailed) analysis 
was performed on the data (frequency and mean duration for all 5 motion categories). 
Intra-tester reliability was found to be within 95% confidence intervals.  
Data analysis: The differences in motion frequency, duration and distance (if 
applicable) between gender and between singles and pairs were examined. All results 
are reported as mean±SD. 
 

RESULTS 

Match times and motion categories: Average match time was 1hr 28±15mins with 
61.8±9.3% of this time spent waiting, 22.3±5.6% walking forward, 8.5±4.2% bowling, 
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2.0±0.4% walking backward and 1.1±0.5% jogging. Individual match times for men’s 
singles, women’s singles, men’s pairs and women’s pairs were 1hr 15mins, 1hr 39mins, 
1hr 14mins and 1hr 42mins respectively. While the difference between average match 
times for gender was quite large (1hr 15mins for men vs. 1hr 41mins for women) when 
the average match time for singles and pairs matches were compared these were quite 
similar, being 1hr 27mins and 1hr 28mins respectively. The percentage of total match 
time within each motion category for each match (n=4) and also for combined singles 
(n=2) and pairs (n=2) matches is presented in Figure 1. 
 

0 10 20 30 40 50 60 70 80

waiting

walking forward

walking
backward

jogging

bowling

% total match time

Womens pairs

Mens pairs

Womens singles

Mens singles

 
(a) 

0 10 20 30 40 50 60 70 80

waiting

walking forward

walking backward

jogging

bowling

% total match time

Pairs

Singles

 
(b) 
 

Figure 1: (a) Percentage of total match time spent within each motion category for each 
individual match; (b) Percentage of total match time spent within each motion category 

for combined singles (n=2) and pairs (n=2) matches. Displayed as mean±SD. 
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The frequency of motion occurrence varied greatly for some motion categories and very 
little for others. The frequency of waiting (143 vs. 90), walking forward (124 vs. 90) 
and bowling (79 vs. 33) motions were the standout differences between singles and 
pairs matches while walking backward (25 vs. 29) and jogging (9 vs. 10) motions were 
similar in number. Mean time spent in each motion was very similar when singles and 
pairs matches were compared with the exception of waiting (20s vs. 41s). These results 
are presented in Table 1. 
 
Table 1: Frequency and mean time for each motion category for all matches combined 

(n=4), singles (n=2) and pairs (n=2) matches. Results are presented as mean±SD. 

Motion Frequency (n) Mean duration (s) 
 All Singles Pairs All Singles Pairs 
Waiting 117±39 143±35 90±20 30±12 20±1 41±2 
Walking forward 107±20 124±6 90±8 11±1 11±0.5 11±2 
Walking backward 27±8 25±6 29±12 4±1 4±0.5 5±1 
Jogging 9±4 9±4 10±5 6±2 7±2 5±1 
Bowling 56±28 79±16 33±4 8±3 8±1 8±5 

 
Distance covered during the match: As seen in Figure 2, the average distance covered 
during a match was 2093±276m.  
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Figure 2: (a) Total distance and distance covered during separate motion categories for 
each individual match; (b) Total distance and distance covered during separate motion 

categories for the combined singles and pairs matches. Displayed as mean±SD. 
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The majority of this was in the form of forwards walking (1792±327m). Jogging 
contributed 7.5±4% of the total distance traveled, or 157±85m. Each jogging repetition 
was approximately 16m in distance. The distance covered in each motion category 
during each match (n=4) and also for combined singles (n=2) and pairs (n=2) is 
presented in Figure 2. 

Heart rate during the match: The average heart rate recorded during the four matches 
was found to be 107±15bpm. This equated to 57±7% of age-predicted HRmax. The 
maximum heart rate that was observed during a match was 78±9% of age-predicted 
HRmax equating to 144±13bpm (highest recorded heart rate was 161bpm). Heart rate for 
each match (n=4) is presented in Figure 3. Figure 4 illustrates the percentage of match 
time spent in several percentages of age-predicted HRmax brackets during the four 
matches analysed.  
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Figure 3: Average and maximum heart rates during each individual match. Average 

heart rates are presented as mean±SD. 
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Figure 4: The average percentage of match time accounted for in several percentages of 
age-predicted HRmax brackets in the four matches analysed. 
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DISCUSSION 
During the four matches analysed at the 2006 Tri-nations Cup Tournament in 
Melbourne it was found that the players spent most of their time engaged in what could 
be termed preparatory activities either behind the mat or at the head. In this study it was 
found that approximately 65% of match time was accounted for in this way. The 
remaining time was spent walking (≈25%), jogging (1%) and bowling (≈9%). The 
average duration of the matches was approximately 1½hr. On average players covered 
just over 2000m during the match. The majority of this distance can be attributed to 
walking forward (≈85%). Average heart rate during the matches was approximately 
60% age-predicted HRmax with the maximum recorded heart rate being close to 80% 
age-predicted HRmax.  
 
Although the total match times were very different when men’s and women’s matches 
are compared, the time taken to play the first set (9 ends) was not markedly different. 
Men took 43min to complete the first 9 ends while women required 45min. The 
explanation for this total match time difference is the nature of the games filmed. Both 
men’s games were completed in 2 sets with the number of ends totaling 16 for singles 
and 15 for pairs whilst the women’s matches comprised 2 sets and a tie-break for 
singles (total of 21 ends) and 2 sets for pairs (total of 18 ends). Therefore, men played 
31 ends in a total time of 149min and women played 39 ends in 201min. This equates to 
4:48min per end for men and 5:09min per end for women. To complete an 18 end match 
(2 sets of 9 ends each) it can be predicted that it would take women 6:18min longer than 
men. To put this in real terms, the men would finish while the women still had a little 
over an end to complete. Amongst bowling circles it often stated that women take 
longer to complete a match than men, tending to spend longer in discussion about 
tactics and inspecting the head. This closeness of predicted finishing times does not 
appear to support the belief that women are much slower players than men. Compared 
to women the men spent 30% more match time in the motions of walking and jogging. 
This is illustrated when distance covered per end is compared. Men covered an average 
of 70m per end and women 51.5m, a 35% differential.  
 
Total match time was not found to be different when singles and pairs were compared 
however when the first 9 ends were analysed pairs took an average of 4min longer than 
singles. Singles players covered on average 500m more than their pairs counterpart (2 
312m vs. 1 876m), this difference was primarily due to the amount of distance traveled 
in walking forward (2 057m vs. 1 528m). Interestingly, the skips of the pairs 
combinations covered more than twice the distance walking backward than the singles 
players, 194m vs. 95m. It was observed during the matches that after discussing tactics 
at the head or mid-rink that the skip of the pairs would take paces backward to either 
finish the conversation with their playing partner or to have a longer look at the 
formation of the head. This may explain the vast difference in distance covered in the 
motion of walking backward. Jogging was not found to be different (160m vs. 154m) 
and appeared to be very individual with singles players recording distances of 235m and 
85m and pairs 82m and 225m (men and women respectively). Differences were 
observed in the % of match time spent in the motion categories of waiting (55% vs. 
70%), bowling (12% vs. 5%), and walking forward (25% vs. 19%). Additionally, the 
frequencies of these same motions were also found to be different. Waiting (140 vs. 90), 
walking forward (124 vs. 90) and bowling (78 vs. 32). Due to the mean times of the 
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motion categories of bowling and walking forward being similar the difference in the 
frequency explains the difference in the % of match time each one accounted for. 
Although singles players had 50 more occurrences of waiting than the skips of the pairs 
combinations the difference in the mean time of this motion category (20s vs. 41s) 
explains the % match time difference observed for this motion.  
 
During the matches analysed (n=4) a little more than 2000m was covered in 90 minutes. 
This gives an average movement velocity over the duration of the match of 
approximately 1.5km/h. However, 65% of this time was spent in the motion category of 
waiting. Walking, jogging and bowling accounted for the remainder of this time. 
Bowling is a relatively stationary event and seeing this accounted for approximately 9% 
of match time the approximate 2000m distance that was covered in a match was 
realistically done in 26% of total match time, or 23½min. This equates to an average 
movement velocity of approximately 5km/h. The motion category of jogging accounted 
for a minor portion of total distance covered (7.5%) with each bout lasting 
approximately 6s, covering 16m at an average velocity of 9.6km/h. Overall, a lawn 
bowls match would rate as a light-moderate intensity activity. Energy expenditure is 
estimated to be approximately 260kcal per match, roughly equivalent to the energy 
required to complete a 40min brisk walk (Whitney and Rolfes, 2002). 
 
Heart rate was found to remain relatively stable throughout each match at an average of 
60% age-predicted HRmax. In fact, 55% of match time (approximately 50min) was spent 
with heart rates between 50-60% age-predicted HRmax. A further 16min (or 18%) of 
match time was played at between 60-70% age-predicted HRmax. The combination of 
these two periods of match time (accounting for more than 70% of match time or 
approximately 60min) would roughly equate to exercising at 35-40% VO2max (Swain 
et al., 1994). According to American College of Sports Medicine (2000) 60 minutes of 
activity at this exercise intensity would not be an effective weigh-loss orientated 
exercise session and would provide for only minimal cardiovascular and health related 
benefits. The maximum heart rate observed was on average close to 80% HRmax. Whilst 
this top end heart rate was only realised very briefly during each match it may pose 
problems to those suffering from cardiovascular complaints such as hypertension.  
 
Golf participants covered 10km during an 18-hole round (Thériault and Lachance, 
1998). Goalkeepers in soccer have been reported to cover around 4km per match (Stolen 
et al, 2005), rugby union referees 8.5km (Martin et al, 2001) and rugby league referees 
6.7km (Kay and Gill, 2003). A total match distance of 10km was covered by elite 
female soccer players (Krustup et al, 2005). These values are all substantially greater 
than the 2km observed in this study. 
 
Super 12 rugby union players spent approximately 40% of match time standing, 38% 
walking and 16% jogging with forwards engaging in static exertion 10% of total match 
time (Duthie et al, 2005). Elite female soccer players spent an average of 16%, 44% and 
34% of match time in the motions of standing, walking and jogging respectively 
(Krustup et al, 2005). While the combination of the three motion categories (standing, 
walking and jogging) is approximately equivalent to this study the contribution that 
each makes to the total is vastly different. Interestingly the 10% match time spent in 
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static exertion reported by Duthie and co-workers (2005) in Super 12 forwards roughly 
parallels the 9% of match time spent bowling in this study, another static activity. 
 
As could be predicted, average heart rates during play for all team sports are 
substantially higher than that observed during this study. Krustup and colleagues (2005) 
investigated 14 elite female soccer players and reported average and maximal heart rates 
of 87% and 97 % of HRmax respectively. During a round of golf it has been reported that 
younger players spend approximately 6% of playing time at a high intensity while 18% 
of playing time is at or below 50% HRmax (Broman et al, 2004). These values are similar 
to that observed in this study and with the average age of participants in the current 
study being similar to that of the work by Broman and co-workers (2004) it appears that 
the games of golf and lawn bowls may share a similar intensity. 
 
CONCLUSION 
The time-motion analysis for movements by players in the sport of Lawn Bowls has 
been investigated for the first time. The majority of match time was spent in a waiting 
or preparatory activity (65%) with the next most time consuming activity being 
forwards walking (≈25%). The average heart rate was 107±15bpm or 57±7% of age-
predicted HRmax. A little more than 2000m was covered during the match with the vast 
majority (85%) of this total distance being forwards walking. Overall, Lawn Bowls 
appears to require light-moderate intensity activity and appears to be similar to the 
physical demands of golf. 
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ABSTRACT 
Model building in game sports should maintain the constitutive feature of this group of 
sports, the dynamic interaction process between the two parties. For single net/wall 
games relative phase is suggested to describe the positional interaction between the two 
players. 30 baseline rallies in tennis were examined and relative phase was calculated by 
Hilbert transform from the two time-series of lateral displacement and trajectory in the 
court respectively. Results showed that relative phase indicates some aspects of the 
tactical interaction in tennis. At a more abstract level the interaction between two teams 
in handball was studied by examining the relationship of the two scoring processes. 
Each process can be conceived as a random walk. Moving averages of the scoring 
probabilities indicate something like a momentary strength. A moving correlation 
(length = 20 ball possessions) describes the momentary relationship between the teams’ 
strength. Evidence was found that this correlation is heavily time-dependent, in almost 
every single game among the 40 examined ones we found phases with a significant 
positive as well as significant negative relationship. This underlines the importance of a 
dynamic view on the interaction in these games. 

 

KEY WORDS 
game sports, model-building, relative phase, random walks 
 

INTRODUCTION 
Game sports may be defined as those sports, where two parties (teams, doubles or 
single) try to achieve their goal and to avoid that the opponent achieves his one (Lames, 
1991). This constitutes an interaction process, and the observable performance is rather 
the emergent result of this interaction process than the display of skills and abilities of 
the two parties. The nature of game sports also implies that this interaction process is 
dynamic. It changes during the match due to the permanent search for successful 
behaviour, due to strategic considerations depending for example on the actual score or 
due to a reaction imposed by an action of the opponent. This constitutes a sharp contrast 
to other sports such as 100m dash or marathon where performance is largely determined 
by the (rather constant) skills and abilities of the athletes.  

If this notion of game sports as dynamic interaction processes is accepted, two 
important consequences are to be drawn. First, some of the traditional methods of 
performance analysis in sports science become doubtful. For example, the search for 
behavioural norms becomes a futile endeavour if behaviour changes dynamically and 
emerges from the singular encounter of the two opponents. Also, assessing individual 
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skill in game sports will remain a problem as long as the measures used add up 
(weighted) frequencies of observed behaviour and do not respect the singularity and 
dynamics of an interaction process. The second consequence is that this notion 
stimulates the search for new models which are capable to describe the crucial 
properties of game sports, interaction and dynamics. 

In this article, two approaches are outlined which tackle the challenges described above 
from different perspectives. First, the positional interaction between two players in 
single net and wall games is described by the relative phase between their trajectories. 
The second approach uses the random walk concept to assess the dynamical strength of 
the two teams in invasion games and studies the interaction between the two processes 
by moving correlations. 
 

RELATIVE PHASE IN TENNIS 
The idea of describing movements of two players with their relative phase was first 
introduced by McGarry et al. (1999) in squash. They were influenced by an 
interpretation of the players’ moves as the moves of a dancing couple. Certainly, 
another source of this idea was the successful application of relative phase in order to 
describe coordinative patterns in movement science (Haken, Kelso & Bunz, 1985; 
Kelso, 1995). McGarry et al. examined the absolute distance of the players from mid-
court and found dominantly an anti-phase behaviour. Palut and Zanone (2005) 
calculated relative phase for the first time with Hilbert transform. They used the lateral 
distance from mid-court in tennis and also found that most of the time, tennis players 
showed an anti-phase behaviour, but also in-phase values of relative phase showed a 
relative maximum. 

Our own investigations were in tennis. We focused on methodological issues and 
addressed the question of the meaning of different values of relative phase for the status 
of the game. 

Why is relative phase a promising approach to describe the spatial interactions in a 
net/wall game? From a systems point of view, the movements in tennis can be perceived 
as the movements of two subsystems, the players. These subsystems are strongly 
coupled by the nature of the game because they exchange strokes. While one player hits, 
the other tries to get in a “neutral” position, from where he has the best opportunities to 
arrive in time at the next stroke. As soon as he recognizes the direction of the stroke, he 
moves to the place of contact, while the other player moves to his “neutral” position. 
Figure 1 displays an idealised long-line and cross rally with the corresponding positions. 

A very interesting hypothesis from a practical point of view is the relation between the 
relative phase and the state of the rally. One might assume that a stable relative phase 
indicates a stable game when no player has problems to arrive just in time for his stroke. 
The very nature of tennis demands, though, to use placement and speed of the strokes to 
create pressure and win the point at last. This should result in a perturbation of relative 
phase. So, the hypothesis is that in a stable phase of the rally the relative phase is stable, 
but in the final phase, when a winner is scored or the opponent is forced to commit an 
error, the relative phase becomes unstable. If this hypothesis could be proven it would 
allow to determine the pressure created during a rally which would in turn be a valuable 
instrument for practical analyses. 
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Figure 1: Idealised paths of lateral distance during a cross rally forehand and during a 

long-line rally in tennis. Relative Phase is constant in both cases, anti-phase (180°, left) 
and in-phase (0°, right). 

We examined 30 rallies of top class athletes which we recorded from broadcasts of 
Grand Slam tournaments (Paris and Melbourne). The rallies were selected if they had a 
considerable length and if they were conducted and finished at the baseline. 18 rallies 
were played by female athletes. The positions of the players were obtained by image 
detection methods provided by the faculty of computer science, technical university 
Munich. Relative phase was calculated from the smoothed (1Hz filtering) time-series of 
positional data from the two players. The algorithm of Hilbert transform (MatLab) was 
used for the calculations. This procedure is well known in signal theory and allows to 
calculate continuous relative phase which is mandatory for we have comparatively few 
strokes in a rally (Pikovsky, Rosenblum & Kurths, 2001). 

The first methodological issue we addressed was the optimal database for calculating 
relative phase. We found that the lateral displacements provide a good representation of 
the behaviour in the court, but have some weaknesses in their phase structure. This is 
due to the fact that even in baseline rallies the players move also perpendicular to the 
baseline in a considerable amount. As a result relative phase sometimes shows features 
that are hard to interpret when taking lateral displacements. 

Figure 2: Lateral displacements and their relative phase of two male players.  
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The end of the rally is “announced” by a change in relative phase from in-phase to anti-
phase. As an alternative we took the players’ trajectory in the court from measurement 
to measurement (25 Hz). Actually these are speed data and relative phase now informs 
about the phase relation of moving speed of the players independent from their position 
on the court. With this data we usually get clear results for relative phase but we lack 
much of the understanding what is going on in the court. As a result, we suggest 
analysing lateral displacement as well as the two-dimensional trajectories in the court. 

 

Figure 3: Speed of 2 female players during rally and relative phase between speed data.  

The cyclical structure of the time series is evident, the rally ended with an unforced 
error of Clijsters which was not “announced” in relative phase which fluctuates around 
in-phase throughout the rally. 

Results concerning the distribution of relative phase show that taking speed data we 
obtain a one-peak distribution indicating the dominance of in-phase. This is due to the 
fact that the rally synchronises the players in the sense that they alternate between two 
states: low speed while one player hits and the other orients for his next stroke, high 
speed while one player approaches the ball for his next stroke and the other comes back 
from his stroke towards a neutral position. This is in good agreement with the findings 
of Palut and Zanone (2005). 

The dominant future task will be to link relative phase to tactical behaviour in the court. 
One way to achieve this will be a close examination of a larger sample of top-class 
rallies, but we will also instruct national-level tennis players to exhibit behaviour 
according to our instructions and study the provoked behaviour of relative phase. 

RANDOM WALK MODELLING IN HANDBALL 
The development of the score in handball for example may be perceived as two 
interlaced random walks. Each team has a probability p to score at ball possession, 
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P(1)=p, and a probability of q=1-p not to score, P(0)=q. Figure 4 left shows these two 
random walks for one example, a game between Germany and Croatia at the world 
championships in 2001. It becomes obvious that the processes are dynamic, we have 
phases where almost each ball possession leads to a goal but we find also periods with 
no goal scored. In some phases the two teams perform at the same level, in other phases 
there are differences. The local performance may be described by moving averages of 
the score. In figure 4 right the double backward moving average of length 4 is shown 
for each team. It reflects something like the momentary strength of a team and gives 
insight into the way the two teams interact.  

 

Figure 4: Left: development of score during a handball match 
Right: Moving average of scoring probability  

There is evidence for the hypothesis that a team’s scoring rate is independent from the 
one of other team, but we see also phases with a seemingly strong dependence. 
Moreover, sometimes the momentary scoring probabilities seem to be negatively 
correlated (my team is good when the other is bad and vice versa, to be seen in the 
middle and the end of the example), but sometimes there is a positive relationship (my 
team performs well when the other does so, to be seen in the beginning).  

Figure 5: Moving correlations of length 20 between scoring probabilities in fig. 4 right 
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This lead to the idea of calculating moving correlations in order to study the relationship 
between the two scoring processes. Figure 5 shows that there are phases with significant 
positive and negative correlations. This behaviour is typical for most of the 30 games 
examined so far. 

DISCUSSION 
Modelling the positional interaction between tennis players by relative phase promises 
to reveal important insights into the nature of the game. Central aspects of game 
behaviour are described by relative phase. A certain limitation lies in the fact that 
relative phase is only apt to deal with longer rallies where the players try to create 
pressure by position play while scoring aces or unforced errors do not have an impact 
on relative phase. An interesting perspective is the description of other net/wall games 
by relative phase such as squash or badminton. 

The examination of the scoring process as a random walk in handball provides 
theoretical as well as practical insights. For theorists it is fascinating to study the 
interaction dynamics during a game. For coaches it may be interesting to identify 
successful and less successful phases in a game as a starting point of a practical game 
analysis. 
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IMPRESS YOUR FRIENDS AND PREDICT THE FINAL SCORE: 
AN ANALYSIS OF THE PSYCHIC ABILITY OF FOUR TARGET RESETTING 

METHODS USED IN ONE-DAY INTERNATIONAL CRICKET 
 

O’Riley, B. and Ovens, M. 

School of Mathematical Sciences, Monash University, Australia 

 

ABSTRACT 
One-Day cricket’s eternal problem is how to fairly account for an interruption that 
occurs during a team’s innings. Several methods have been applied in the past, some 
more successfully than others. Numerous articles have been written about different 
target resetting methods applicable in one-day international cricket and how they 
“favour” one team over another. Gurram and Narayanan (2004) attempt to address this 
issue by quantifying the ‘fairness’ of five different methods,1 using data from 377 
uninterrupted matches2. In this paper we use an alternative approach looking at the 
psychic ability of four target resetting methods3 and compare how well they predict the 
final score based on the present state of the first innings. We attempt to convert each of 
methods we investigate into a ball-by-ball predictive tool.  We introduce a terminal 
interruption to the first innings at every ball and compute the predicted final score. We 
ascribe a nominal value to the difference between the final achieved score and the 
prediction given by each method. We compute our own ‘Psychic Metric’ to enable a 
comparison between the four methods. We also develop a computer package to 
manipulate the data from matches4 in which the first innings was completed. 
 
KEY WORDS 
cricket, precicting scores, psychic abilities 

 
INTRODUCTION 
Many papers have been written about mathematics and cricket, on topics such as 
optimal batting strategies (Clarke, 1988), player performance measurements (Lewis, 
2004, Allsopp and Clarke, 2000) and target resetting methods (Lewis, 1996, 1998, 
2002, Gurram and Narayanan, 2004, Jayadevan, 2002, Armstrong, 1994, Bhogle, 1999).  
Several of the target resetting papers used historical data to build the method. We 
borrow this approach to evaluate the ability of four methods to predict the score 
achieved by the first batting team (Team 1), using data from 173 matches, some of 
which involved stoppages. Given that Team 2’s target in an uninterrupted match is 
dependent on Team 1’s final score, any target resetting method would need to have a 
reasonably good estimate of what Team 1 is likely to score. Our intention is to 
formulate a metric that could be used to assess the predictive ability of a target resetting 
method.  
 
                                                 
1 The methods were: Duckworth/Lewis, Jayadevan, Most Productive Overs, Discounted Most Productive 
Overs and Average Run Rate 
2 Data extracted from the CricInfo website 
3 The methods chosen: Duckworth/Lewis, Jayadevan, Parab and Average Run Rate 
4 Data was kindly supplied by Champion Data 
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THE “FAIRNESS METRIC” 
Gurram and Narayanan's 2004 paper addresses the fundamental issue of how "fair" 
some of the better-known target resetting methods are. Additionally, it provides some of 
the motivation for our work and as such, it is worthwhile considering issues raised by 
the paper.  Firstly, in attempting to quantify how "fair" the chosen methods are, the 
paper fails to address some very important issues in relation to how the game is played.  
Gurram and Narayanan's fairness metric was only applied to games that went beyond 
the 25th over in the second innings5.  Although the paper states that only games with 
“no interruption” were examined, "no interruption" was defined as a game consisting of 
two innings, where the innings concluded only when all balls had been bowled or all 
wickets had been lost.  Consequently, this definition fails to acknowledge games that 
were interrupted, but resumed with no overs lost; and those games in which an 
interruption "threatened", but did not eventuate.  By not taking these "interruptions" into 
account and given that Gurram and Narayanan only dealt with the second innings, one 
of the most important factors of one-day cricket is completely disregarded - the 
psychology of the game. 
 
Secondly, Gurram and Narayanan originally found that the Average Run Rate method 
was "fairest" (with a fairness metric of 0.708).  By their own admission (in section 2.1.1 
of the paper), ARR has many downfalls, particularly the fact that the wickets remaining 
are not taken into account.  Although ARR was once used in One Day International 
Cricket, it was eventually dismissed, due its many shortcomings, including the fact that 
it leads to an unfair advantage to Team 2 (as discussed in Lewis, 1996, Ovens, 2004).  
Consequently, it is worrying to see that ARR is still favourably viewed even when 20% 
of the “mismatches” are forgiven.  It should also be noted that Gurram and Narayanan 
have no clearly defined rule to determine which mismatched overs should be removed; 
leading to the suspicion that one is able to take out particular overs in order to make one 
method perform better than another.  On top of all this, their fairness metric asserts that 
of all the methods reviewed, Jayadevan's is the fairest, although the paper (like many 
others) states that one of the shortcomings of the Jayadevan method is that it fails to 
sufficiently address the issue of fallen wickets. The Duckworth/Lewis method appears 
to adequately take into account the effect of wicket loss, leading one to assume that this 
method would be “fairer”.  Over-all, Gurram and Narayanan's concept of computing a 
fairness metric as a way of comparing target resetting methods is laudable, but perhaps 
there are other factors that should be taken into account, e.g. the psychology of batting 
second.  This provides motivation for our undertaking to formulate a metric that 
addresses these factors. 
 
OUTLINE 
The four methods chosen were Average Run Rate, PARAB, Duckworth/Lewis and 
Jayadevan.  Average Run Rate (ARR) and PARAB (P) methods were chosen as they are 
easily adapted to predict a score achieved by the conclusion of an innings, using only 
the present runs scored and balls bowled.  Duckworth/Lewis (D/L) was chosen as it is 
the current rain-rule used in One-Day international cricket.  Jayadevan’s method (J) was 
chosen as a potential alternative rain-rule that could be used to replace D/L (as 

                                                 
5 According to ICC rules when the paper was written, a result would only be recorded if an interrupted 
match lasted for more than 25 overs per side. 
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discussed in Ovens, 2004).  These last two methods both required manipulation to be 
able to be turned into predictive tools.   
 
In order to use D/L as a predictive tool, we adapted the target formula (Equation 1) to 
the form shown in Equation 2. 

T =

S × R2
R1

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + 1 if R2 < R1

S + 1 if R2 = R1

S +
R2 − R1( )× G50

100

⎛ 

⎝ 
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Equation 1: Standard Edition D/L Target Formula 

 
Where T is the target for Team 2, S is the score achieved by Team 1, R1 is the resources 
available to Team 1, R2 is the resources available to Team 2 and G50 is the average 
score achieved in 50 overs in One-Day International Cricket (presently equal to 235). 

T = S +
100 − R1( )× 235

100

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ +1 

Equation 2: D/L “Predictive” Formula 

 
In the case of a stoppage occurring during Team 1’s innings, Jayadevan’s method is 
applied as follows: 

1. Determine the percentage of overs completed by Team 1. 
2. Look up the corresponding normal score percentage in the normal table for the 

number of wickets fallen. 
3. Determine the percentage of remaining overs after the stoppage with respect to 

the original number of overs remaining. 
4. Look up the corresponding target score percentage in the target table. 
5. Multiply the target score percentage by the difference between 100% and the 

normal score percentage. 
6. Add this percentage to the normal score percentage obtained in step 2 to get the 

Effective Normal Score (ENS) in the total percentage of overs played. 
7. Look up the target score percentage for the total percentage of overs played. 
8. Multiply this target percentage by the ENS from step 6 to get the Multiplication 

Factor (MF). 
9. Multiply the score made by Team 1 with MF to get the target for Team 2. 

 
To convert Jayadevan’s method into a predictive tool, we note that step 3 gives us 0% 
overs remaining, which in turn means that steps 4, 5 and 6 are unnecessary and the 
effective normal score is the normal score obtained in step 2. Thus, the result obtained 
in step 9 would be the target for Team 2, consequently the predicted score for Team 1 is 
one run less. It is worth noting that if Team 1’s score is zero then this method results in 
a predicted score of zero. Further scrutiny of Jayadevan’s method also indicates that, 
when using this as a predictive tool, the multiplication factor from step 8 will always be 
less than 1. 
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Software was written so that predictions using each method could be easily calculated 
from the present state of the match.  Using the data provided by Champion Data we 
computed the predictions for each method on each ball of the first innings of the 173 
matches.  Figure 1 shows a screen shot of the predictions being computed ball by ball 
for ODI #1620. 

   
Figure 1: Software Screenshot 

 
We then defined OverProjijk as the difference between the prediction (on ball i, in match 
j, using method k) and the actual runs scored on ball i, match j.  This OverProjijk is then 
used to compute four different alternative Psychic Metrics; by ball, by delta, by 
delta/ball and by arbitrary.  We define the four Psychic Metrics as follows:  
 

( ) irojOverPPM ijkijk ×= 2  

Equation 3: Psychic Metric by ball 
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Equation 4: Psychic Metric by delta 
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Equation 5: Psychic Metric by delta/ball 
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Equation 6: Psychic Metric by arbitrary 

 
By observing equation 3, one can clearly see that the by ball method gives a squared 
difference, weighted by ball, an approach similar to that used to compute variance.  
Equation 4 (by delta) subtracts the squared proportion (of over projection divided by 
total) from 1 where a result closer to 1 indicates a better prediction.  Equation 5 then 
weights this method by ball, such that a result closer to i indicates a better prediction.  
Equation 6 allows for a nominal value to be ascribed to a range of differences (which 
are able to be defined by the user). 
 
Using the four psychic metrics, we were able to come up with scores scaled for each 
method. 
 
RESULTS 
We present examples using two of the psychic metrics to demonstrate the results 
obtained from the work undertaken in this paper. 
 
1 An example of the Arbitrary Psychic Metric 
To illustrate how the arbitrary psychic metric could be used, we have, for each ball, 
scored the absolute difference between the actual and predicted runs, according to the 
following scale. 
Table 1: Psychic Scale 

Difference Score )( iS  
1 10 
5 5 
10 1 
11+ 0 

 

This score was then multiplied by the balls remaining in the innings. Summing over the 
entire innings gives the following representation for Match j, Method k. 
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Equation 7: Raw Psychic Metric 
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From this representation, it is clear that the maximum possible raw score for any 50 
over match would be 451,500 and thus: 
 

451500
)(RawPM

PM jk
jk =  

Equation 8: Scaled Psychic Metric 

 
As can be seen from Table 2, the mean for D/L is maximal over the four methods, 
although equally has the highest standard deviation.  J is by far the most stable but also 
consistently less able to predict the final score.  It is also interesting to note that none of 
the computed confidence intervals overlap that of the D/L method, indicating that there 
is a significant difference at the 5% level. 
 

Table 2: Basic Statistics on Psychic Metric (Arbitrary) 

 Mean Std Dev Lower CI Upper CI
ARR 0.12 0.12 0.10 0.14
D/L 0.18 0.16 0.16 0.21
Jay 0.03 0.04 0.02 0.03
Parab 0.05 0.10 0.03 0.06

 
Figure 2 shows the average differences for each method, over the course of 300 balls. 
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Figure 2: Graph of average differences versus Ball 

 
As can be seen in the above graph, the Jayadevan, PARAB and Average Run Rate 
methods do poorly when compared to the Duckworth/Lewis method.  One expects that 
as we get closer to the end of the game, the predictions will improve for all methods and 
this is evidenced in the above graph.   The following table shows a comparison between 



 41

the four methods with 10 overs remaining.  Table 3 shows that, at this point in the 
innings, ARR predicts, on average, 17.29 runs below the actual score, compared with 
D/L, 4.50 runs below, Jayadevan, 31.13 runs below and PARAB, 41.60 runs below.  It 
is interesting to note that the minimum and maximums for D/L are almost symmetrical 
about zero, whereas the other three methods are asymmetrical about zero being further 
on the negative side. 
Table 3: Method Comparison (Arbitrary) 

 ARR D/L J P 
Average -17.29 -4.50 -31.13 -41.60 
Variance 635.06 475.68 584.47 798.24 
Standard Deviation 25.20 21.81 24.18 28.25 
Minimum -91 -70 -95 -121 
Maximum 62 72 39 26 

 
 
2 An example using the By Delta/Ball Psychic Metric 
As can be seen from Table 4, the means of ARR and D/L are both significantly close to 
one another and reasonably close to the ‘ideal’ average final score (150).  We have not 
computed the confidence levels, as these values are bounded above. 
 

Table 4: Basic Statistics on Psychic Metric (By Delta/Ball) 

 Mean Std Dev 
ARR 144.59 88.28
D/L 146.34 88.23
Jay 128.57 97.61
Parab 136.98 89.51

 

Table 4 shows a comparison between the four methods when the last 10 overs are being 
played.  At this stage of the game, the Duckworth/Lewis method’s average predicted 
final score (267.66) is closest to the ‘ideal’ average score, closely followed by Average 
Run Rate (268.26), Jayadevan (264.24) and PARAB (258.94).  The ideal average is 
270.5 runs.  Due to the definition of the metric, no minimum or maximum values have 
been given. The potential minimum is for all methods is 0 and the potential maximum is 
300, therefore no further information would be gained by including these values.  
 

Table 5: Method Comparison (By Delta/Ball) 

 ARR D/L J P
Average 268.26 267.77 264.24 258.94
Variance 389.12 660.89 1119.84 1720.73

 
The software used to obtain these results was adapted to allow us to check for any 
games that may have heavily influenced the results.  This was done by visual 
inspection, using graphs plotted by the software. 
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DISCUSSION 
We expected to find that both the Average Run Rate and PARAB methods would not 
perform well when compared to other methods, as it has been demonstrated time and 
time again that they have potentially serious shortcomings as target resetting methods.  
These shortcomings imply that the methods will not perform well over extended 
periods, however they were included to aid in comparison.  Furthermore, we also 
expected that Jayadevan’s method would not perform well, as it is a method that is not 
designed to predict scores but rather to reset the target, yet, as mentioned earlier, a target 
resetting method should have a reasonably accurate estimate of Team 1’s expected final 
score.  The intention of this work was to create a metric that could be used to assess the 
accuracy of a target resetting method in computing Team 1’s expected final score.  This 
leads us to conclude that Jayadevan’s method would work best only when Team 1 has 
completed its innings.  As the Duckworth/Lewis method is readily adaptable as both a 
predictive and a target resetting tool, it met our expectations to surpass the other 
methods.  Assessing the four methods with our various psychic metrics, we conclude 
that the Duckworth/Lewis method is the most reliable in computing the expected final 
score of Team 1 and therefore should be chosen above other potential target resetting 
methods. 

In attempting to create a metric to assess a target resetting method, we have 
inadvertently introduced potential weaknesses.  Firstly, the data set we used, kindly 
supplied by Champion Data, consisted of only 173 matches, most of which came from 
series in which Australia was involved.  Consequently, it was not a truly random 
sample.  A more accurately representative data set, consisting of matches from various 
series and between various teams would allow us to address this problem.  Secondly, in 
order to measure the methods against our psychic metric “ruler”, we needed to adapt 
each of the methods to produce a 50 over score.  For ARR, PARAB and D/L this is 
readily achieved, but for J this produces problems, as one of the assumptions underlying 
the method is that Team 2 cannot possibly face more overs than Team 1.  Whilst this is 
true, it is a technical deficiency of the J method that restricts it from providing a 
prediction of Team 1’s final score.  Thirdly, in this work, we have only addressed 
terminal stoppages, which may have biased the results. 

In the future, we plan to look at multiple stoppages, to see whether they affect a team’s 
predicted final score.  Another area that could be looked at would be to givesuch metrics 
the ability to be classified by both country and ICC ranking.  This would allow one to 
deal with inefficiencies stemming from the issue of low scoring teams playing high 
scoring teams and the problems this causes when target resetting methods are applied.  
An additional aspect to consider for possible future research would be to investigate if 
suggested new rules affect how a team plays its innings and if this in turn affects the 
final score prediction.  As an extension of this, one could look at if and how the batting 
order affects a final score prediction (like Bukiet et al, 1997 and to appear).  Overall, in 
our opinion, D/L is presently the best target resetting method and is the most accurate at 
predicting Team 1’s final score. 
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Oxford Brookes University, UK 
 
ABSTRACT 
The author's paper at the 7th Conference on Maths and Computers in Sport on this topic 
showed that the Duckworth/Lewis methodology has considerable potential for providing 
more relevant and objective measures of performance in one-day cricket for single matches 
and over short series of matches such as the Australian VB Series.  This paper evaluates 
how the methodology of these measures would apply on the longer term.  This assessment 
is based upon several series of matches, involving the main players from most of the major 
cricketing nations.  Although data used are not exhaustive they are of sufficient quantity 
that strong indications of the long term viability of the measures can be gleaned, leading to 
a realistic expectation of either inclusion of the methodology into the existing LG ICC 
rankings or the development of an independent set of performance indicators that more 
reliably reflect the value of players' inputs to matches. Such measures are expected to be of 
value to team management, to media commentators and, not least, to the public in assessing 
performances of one-day players both on current performance and longer term over their 
respective careers. 
 
KEY WORDS 
 sports statistics, cricket, modelling 
 
INTRODUCTION 
This paper is concerned with further evaluating proposed improvements to measures of 
player performance in one-day cricket.  In Lewis (2004, 2005) it was shown that the 
Duckworth/Lewis (D/L) methodology of target resetting in interrupted limited overs cricket 
matches can be used to assess, arguably more reliably, performances of batsmen and 
bowlers compared with the traditional measures of batting and bowling averages, and their 
subsidiaries of strike and economy rates.  In addition, by using other aspects of the D/L 
methodology, Lewis (2004, 2005) and Beaudoin and Swartz (2003) have created different 
measures that assess 'all-round' performance, which previously was not possible in an 
objective way using the traditional measures of performance. 
 
These measures were shown to assist in assessing contributions to the team effort from 
individual players, not only for a particular match, but also for a series of matches and to 
provide aids to adjudicators in deciding on 'man-of-the match' and 'player of the series' 
awards' .  
 
Lewis (2004) concluded that the analysis of many more matches was necessary in order to 
investigate the reliability and viability of these measures in the longer term.  He further 
suggested that if this were to be the case then their methodology could either be 
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incorporated into the popular player ratings or perhaps supplant the existing player-rating 
measures now run by the International Cricket Council (ICC) and promoted as the LG ICC 
ratings [http://www.cricketratings.com/ accessed 7 April 2006]. 
 
REVIEW OF D/L PERFORMANCE MEASURES 
The performance measures proposed in Lewis (2004) are based on the D/L methodology 
(Duckworth and Lewis, 1998, 2004).   

Net contribution 
The measure called Net Batting (or Bowling) Contribution is a summation, on a ball-by-
ball basis, of what a batsman scores (or a bowler concedes) relative to the runs expected 
from the D/L model (Lewis, 2004).  The measure for each player is in the form of a positive 
or negative number of runs, which is usually non-integral, representing the overall extent to 
which the player has performed above or below expectation for the match situation for the 
balls received or delivered.  With a common and additive scale it is possible to compare not 
only batsmen and bowlers amongst themselves but also batsmen with bowlers.  Further, it 
is possible to combine a player's performance in batting and bowling in order to produce a 
measure of 'all-round' performance. 

Resource (percentage) average 
The second measure of player-performance proposed in Lewis (2004) was the Batting (or 
Bowling) Resource Percentage Average.  According to the methodology developed, the 
delivering and receiving of a ball and the loss and taking of a wicket involve consumption 
of resources by the batsman and contribution of resources by the bowler.  The respective 
Resource Percentage Averages are the average runs scored per unit of resource consumed 
by the batsman and the average runs conceded per unit of resource contributed by the 
bowler.  For the latter this includes the number of wides and no-balls bowled as these forms 
of 'extras' count against the bowler but are not credited to the batsman. 

Runs per match 
Beaudoin and Swartz (2003) have produced a measure called Runs per Match (RM) both 
for batsmen and bowlers.  These measures are a multiple of 100 of the batting and bowling 
resource percentage averages respectively. These figures are interpreted as the average 
number of runs scored or conceded were the player to do all of the batting or the bowling 
himself.  According to the D/L model of one-day cricket (Duckworth and Lewis, 1998, 
2004) the average runs in 50 overs, with all wickets available, is represented by Z(50,0) and 
has a value of 235.  For batsmen an RM measure above 235 represents an above average 
batsman with the converse true for a bowler.  
 
Long-run performance measures 
Batting and bowling averages are the traditional ways of evaluating player performance in 
the long term, although couched in qualifying terms because of the known weaknesses in 
these measures (Lewis 2004, 2005).  Using their RM measures Beaudoin and Swartz 
(2003) undertook an analysis of the performances of several high-profile players between 
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1998 and September 2002 in order to achieve more meaningful measures of performance 
over those players’ careers during that period.  Some of these players also appear in the 
analysis that follows.  Several interesting comparisons will be drawn. 
 
In order to gain some indication of how Net Contributions and Resource Percentage 
Averages would work longer term, several one-day international (ODI) series have been 
analysed in exactly the same way as the Victoria Bitter (VB) Series for 2003 discussed in 
some detail in Lewis (2004, 2005).  The series of matches summarised in subsequent 
analyses, in chronological order, are as follows.  Several abbreviations subsequently 
employed in this paper are defined through this list. 
 
(i) VB 2002 (VB02): between Australia (Aus), South Africa (RSA) and New Zealand 

(NZ) [14 matches] 
(ii) NatWest Series 2002 (NW02): England (Eng), India (Ind) and Sri Lanka (SriL) [10] 
(iii) VB 2003 (VB03): Australia, England, Sri Lanka [14] 
(iv) NatWest Series 2003 (NW03S): England, Sth Africa, NZ [10] 
(v) NatWest Challenge 2003 (NW03C): England, Pakistan (Pak) [3] 
(vi) Tour 2003: West Indies (WI), Australia [7] 
(vii) T V Sundaram Iyengar & Sons Cup 2003 (TVS03): India, Australia, NZ [10] 
(viii) VB 2004 (VB04): Australia, India, Zimbabwe (Zim)[14] 
(ix) Tour 2004: West Indies, England [5] 
(x) Tour 2004: Sri Lanka, Australia [5] 
(xi) NatWest Series 2004 (NW04S): England, NZ, West Indies [10] 
(xii) NatWest Challenge 2004 (NW04C): England, India [3] 
(xiii) Tour 2005: Sth. Africa, England [7] 
(xiv) VB 2005 (VB05): Australia, NZ, Pakistan [14] 
(xv) Tour 2005: NZ, Australia [5] 
(xvi) NatWest Series 2005: England, Australia, Bangladesh (Bang)[10] 
 
All major ODI countries have featured in at least three series, with the exceptions of 
Pakistan, Zimbabwe and Bangladesh.  Consequently the principal players from these three 
countries are not included in subsequent analysis.  Because the sources of the author's 
electronic data are located in the United Kingdom and Australia there is arguably a bias 
towards performances of players from these countries in subsequent analysis.  However, 
such bias is believed not to invalidate the conclusions to be drawn. 
 
Because of the turnover of players during the three-year period of this research, many 
players have played insufficiently for their overall performances to be regarded as 
representative.  Players included in subsequent analyses are only those who have played a 
role in more than 12 innings in order to reduce bias due to small volumes of input.  And in 
order that comparisons are as current as possible only players who have retained a ranking 
in the top 100 of the LG ICC ratings are included.   
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The LG ICC ratings 
The LG ICC ratings [http://www.cricketratings.com/ accessed 7 April 2006] are generally 
regarded as the current market leaders of player performances in international cricket.  
There are two sets of rankings, one for Test Matches, and one for ODIs.  This paper is 
concerned only with the latter set, which include ratings and rankings for batsmen and 
bowlers and more recently, rankings for all-round performance.  The ratings are provided 
on a scale from 0 to 1000.  The Internet website cited gives a general overview of the 
principal features of the ratings but does not provide full details of the calculations due to 
commercial sensitivity.  
 
The mechanism of the LG ICC ratings uses only information on players' performances in a 
match that is provided by a standard summary scorecard as typically reproduced in Engels 
(2006).  Consequently, the information captured by these ratings is likely to be more 
limited in scope than that used for analysis in this paper, although there is substantially less 
processing than is required by the D/L and RM performance measures.  
 
Because of a discounting factor over time in the LG ICC ratings, players' more recent 
performances are given greater weight and players who are not selected for play quickly 
lose their status in the rankings 
 
Whereas the information in the traditional scorecard provides the details for calculation of 
traditional averages, it is not sufficient for the analysis undertaken in this paper or in Lewis 
(2004).  Substantial detail on the outcome of every ball is required.  The author's data-
sources, from Australia and the United Kingdom, provide detail in electronic form, to the 
level of who bowled to whom, how many runs were scored, or byes and leg-byes, wides 
and no-balls conceded and the mode of dismissal when the wicket falls.   
 
Performance measures in the longer-term  
It must be stressed that the analysis that follows is intended to indicate how the Net 
Contribution and Resource Percentage Average measures would operate over a series of 
matches.  Because the number of matches included is just a sample from the players' 
careers there is no implication, at this stage, that the rankings produced are definitive 
rankings for the players involved.  To some extent, however, comparison will be made with 
the current LG ICC international player ratings for the purpose of content validation of the 
D/L-based performance measures, and where possible, with the results of the study by 
Beaudoin and Swartz  (2003). 
 
In order to standardise the analysis, the net contributions and resource percentage averages 
will all be based on the D/L tables of September 2002 [http://www.icc-cricket.com/rules/d-
l_table.pdf accessed 7 April 2006]. 

Batting rankings 
Table 1 provides the performances of the eligible players (according to the criteria 
previously defined) over the one-day series mentioned above.  
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Table 1:  Summary of batting performance measures for qualifying batsmen 
 
 
 

Player 

 
 

Coun-
try 

 
 

Batting 
Innings 

 
 

Batting 
avge 

 
Batting 

avge 
rank 

 
 

Batting 
contrib 

 
Batting 
contrib 

rank 

 
Batting 
res% 
avge 

Batting 
res% 
avge 
rank 

 
LG ICC
rating 

 
LG 
ICC 

rank*
Pietersen Eng 13 99.57 1 252.3 7 3.473 1 611 23 
Lehmann Aus 14 68.12 2 126.5 14 2.836 5 544 31 
Kallis RSA 20 54.87 3 40.6 26 2.306 31 708 8 
Tendulkar Ind 21 54.68 4 280.3 5 2.996 3 692 10 
Sarwan WI 23 50.82 5 156.1 11 2.661 10 672 13 
Kaif Ind 13 46.87 6 66.8 20 2.652 11 532 34 
Clarke Aus 33 46.66 7 243.9 8 2.649 12 705 9 
Flintoff Eng 31 43.96 8 309.8 3 2.998 2 711 5 
Sangakkara SriL 17 42.86 9 127.7 13 2.703 7 709 7 
Laxman Ind 21 41.66 10 57.8 22 2.389 24 532 35 
Strauss Eng 29 41.40 11 120.3 15 2.483 16 488 39 
Lara WI 22 41.15 12 158.5 10 2.681 8 646 20 
Smith RSA 14 41.00 13 40.0 27 2.368 26 722 3 
Hayden Aus 49 40.33 14 294.8 4 2.622 13 671 14 
Chanderpaul WI 16 39.73 15 69.3 19 2.444 20 625 21 
Martyn Aus 55 39.67 16 4.2 38 2.192 39 654 19 
Ponting Aus 61 39.52 17 253.3 6 2.478 18 759 1 
Trescothick Eng 53 38.57 18 396.3 2 2.747 6 658 18 
Jayawardene SriL 19 38.33 19 72.8 18 2.409 23 555 29 
Symonds Aus 47 37.75 20 241.0 9 2.596 14 660 17 
Dravid Ind 24 37.04 21 -1.5 40 2.184 40 711 5 
Gilchrist Aus 56 36.96 22 508.0 1 2.945 4 724 2 
Jayasuriya SriL 18 35.83 23 133.3 12 2.663 9 670 15 
Gayle WI 24 35.36 24 10.7 36 2.217 36 717 4 
Gibbs RSA 24 33.3 25 34.6 30 2.306 32 674 12 
Y.Singh Ind 25 32.63 26 82.9 17 2.477 19 546 30 
Fleming NZ 23 32.04 27 38.4 28 2.280 34 670 15 
Solanki Eng 22 31.85 28 49.8 23 2.370 25 490 38 
McMillan NZ 24 31.71 29 14.1 34 2.211 37 578 25 
Cairns NZ 17 31.64 30 58.9 21 2.501 15 588 24 
Vaughan Eng 41 31.64 31 0.7 39 2.198 38 569 26 
Boucher RSA 20 30.5 32 45.1 24 2.434 21 542 32 
Collingwood Eng 37 30.34 33 95.4 16 2.431 22 512 36 
Sehwag Ind 22 28.81 34 41.6 25 2.332 28 618 22 
Atapattu SriL 19 28.63 35 -24.3 43 2.043 43 675 11 
Katich Aus 14 28.54 36 37.9 29 2.480 17 348 46 
JonesG Eng 21 28.43 37 21.4 31 2.325 29 419 43 
Astle NZ 15 27.46 38 -54.8 47 1.921 46 569 27 
Hogg Aus 22 26.25 39 -44.8 45 1.928 45 407 44 
Ganguly Ind 21 25.85 40 -37.6 44 2.024 44 557 28 
Harris NZ 16 24.58 41 -50.4 46 1.844 47 426 42 
Styris NZ 15 24.15 42 -9.7 42 2.063 42 535 33 
McCullum NZ 14 24.08 43 -6.6 41 2.120 41 450 41 
Powell WI 19 23.93 44 20.0 32 2.315 30 503 37 
Pollock RSA 17 21.90 45 5.9 37 2.271 35 472 40 
LeeB Aus 23 18.93 46 13.9 35 2.287 33 346 47 
Vettori NZ 16 15.61 47 16.2 33 2.359 27 368 45 
* The LG ICC ranking displayed is for the 47 players of this table having excluded players from the LG ICC lists not 
qualifying by the criteria of this paper. 
 
Players are ranked in accordance with their traditional batting averages, but their ranks by 
the two measures suggested by this paper (called the D/L-based measures) are included for 
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comparative purposes.  Beaudoin and Swartz (2003) RM measures are a multiple of 100 of 
the Batting Resource Percentage Averages 
 
Table 1 also provides the number of innings in which each player batted, together with the 
LG ICC rating applicable to 31 May 2005.  This was the date of their publication as near as 
possible to the final match of the final series included in the database, that of the NatWest 
Series of 2005 which concluded on 3rd July 2005. 
Several features emerge from Table 1.  One is the variation in the rankings of the players 
under the various methods of measuring batting performances.  It is left to the reader to 
compare and contrast the rankings of players of interest.   
 

Batting correlations 
Table 2 summarises the correlations of the players' batting performance measures and with 
the number of innings in which they have contributed.  These correlations are obtained 
from all of the 47 batsmen who have batted in more than 12 innings and have an LG ICC 
rating.   
 

Table 2:  Correlations of player's batting performances and number 
innings 

Batting  
Correlations 

Batting 
Innings 

Batting 
avge 

Batting  
contrib 

Batting  
res% avge

LG ICC  
rating 

Batting 
Innings 

1     

Batting 
avge 

0.004 1    

Batting  
contrib 

0.590 0.479 1   

Batting  
res% avge 

0.169 0.746 0.810 1  

LG ICC  
rating 

0.400 0.437 0.499 0.358 1 

  
The correlations between the three performance measures are moderate yet significant, the 
strongest being between the D/L based measures, as might be expected, and the weakest 
between standard batting average and net contribution.  Beaudoin and Swartz (2003)  found 
a correlation of 0.67 between batting average and their RM measure, which is not 
inconsistent with the 0.746 for this study. 
 
The correlations of the performance measures with the LG ICC ratings are modest in all 
cases but slightly stronger for net batting contribution.  It will be seen that the correlation of 
the number of innings with the standard batting average, 0.004, is insignificant, which 
probably justifies its use as a long term measure of evaluation of the particular aspect of 
batting that it captures.  The number of innings by batsmen correlates weakly, at 0.169, 
with batting resource average but much more strongly, at 0.590, with net contribution.  This 
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is suggesting that the more that batsmen play the greater the effect on their net contribution.  
This implies that the net contributions of the better batsmen will generally increase over 
time, and those of weaker batsmen decrease.  
 

Table 3: Summary of ODI bowling performance measures 
 
 

Player 

 
 
Coun-

try 

 
Bowl 
-ing 

innings 

 
Bowl 
-ing 
avge 

Bowl-
ing 

avge 
rank 

 
Bowl 
-ing 

Contrib 

Bowl 
-ing 

Contrib
rank 

Bowl-
ing 

res% 
avge 

 
Res % 
avge 
rank 

 
LG 
ICC 

rating 

 
LG 
ICC 

rank* 
McGrath Aus 34 19.30 1 388.8 1 1.686 1 865 1 
LeeB Aus 48 22.32 2 246.3 2 2.015 3 819 3 
Kasprowicz Aus 13 22.50 3 69.8 6 1.985 2 632 12 
Ntini RSA 22 22.82 4 90.8 4 2.222 8 757 6 
Flintoff Eng 31 24.50 5 55.7 7 2.163 5 727 8 
Styris NZ 14 25.53 6 -1.8 15 2.294 12 629 13 
Khan Ind 13 25.75 7 -63.5 28 2.509 20 625 16 
Anderson Eng 29 25.95 8 24.9 11 2.243 9 652 11 
Lehmann Aus 13 26.53 9 -37.9 19 2.592 24 436 30 
Agarkar Ind 17 26.96 10 -36.4 18 2.395 17 596 20 
Gough Eng 42 28.01 11 79.7 5 2.178 6 732 7 
Harmison Eng 27 28.27 12 -3.7 16 2.297 13 618 18 
Cairns NZ 18 29.45 13 -14.2 17 2.365 16 624 17 
Gayle WI 18 29.50 14 14.7 13 2.412 18 525 24 
Hogg Aus 37 29.64 15 18.2 12 2.249 10 627 15 
Pollock RSA 23 29.92 16 136.6 3 2.020 4 805 4 
Bravo WI 13 30.15 17 32.6 9 2.302 14 452 29 
Vaas SriL 18 31.33 18 -38.3 20 2.702 29 831 2 
Clarke Aus 33 32.61 19 -89.6 31 2.677 28 281 35 
Boje RSA 15 32.73 20 12.8 14 2.354 15 560 22 
Gillespie Aus 39 33.24 21 -133.7 34 2.503 19 786 5 
Pathan Ind 13 33.68 22 -60.7 26 2.520 21 629 14 
Watson Aus 17 34.11 23 -81.4 29 2.660 25 370 33 
Kallis RSA 19 34.85 24 -60.5 25 2.712 30 470 28 
Vettori NZ 25 35.36 25 26.4 10 2.263 11 722 9 
Symonds Aus 45 37.42 26 -164.6 35 2.528 23 515 26 
Collingwood Eng 31 38.83 27 -132.2 33 2.672 27 393 31 
Nehra Ind 13 40.61 28 -104.4 32 2.819 34 607 19 
Ganguly Ind 14 40.66 29 -63.2 27 2.733 32 314 34 
Giles Eng 31 43.03 30 41.5 8 2.196 7 675 10 
Sehwag Ind 14 45.50 31 -53.1 23 2.671 26 390 32 
Vaughan Eng 16 46.00 32 -57.5 24 2.71 31 279 36 
Jayasuriya SriL 18 48.30 33 -84.4 30 2.815 33 553 23 
Harris NZ 17 49.54 34 -46.3 22 2.525 22 474 27 
Dillon WI 15 57.83 35 -40.0 21 2.897 35 594 21 
Kumble Ind 16 59.33 36 -168.4 36 2.968 36 519 25 
* The LG ICC rankings quoted are for the 36 players of this table, suitably adjusted for ODI players not 
qualifying for the table. 

  
As a consequence, net contributions do not stabilise in order to be used to compare 
performances in the long run, nor when batsmen have different amounts of input. This 
characteristic implies that net contribution as a long-term measure of batting performance 
would be appropriate for comparisons of contributions over players’ careers rather than for 
comparing players with differing volumes of input.  On the other hand, the resource 
percentage average would appear to offer such facilities, once the effects of small amounts 
of input, as outlined in Lewis (2004, 2005), have been eliminated.  
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There would likely be no disagreement in the conclusion that the best bowler within the 
study of this paper is McGrath (Aus); there is a clear difference in all of his performance 
measures from the next-best bowler.  Furthermore, there has been little change in 
McGrath's consistency since the Beaudoin and Swartz study, which found for him a 
bowling average of 20.1, an economy rate of 3.79 and an RM of 164.0.    
 
Elsewhere in Table 3, there is arguably more consistency in the rankings than with the 
batsmen of Table 1.  Again, the reader can compare and contrast various bowlers of 
interest.   
 

Table 4:  Correlations of player's bowling performances and number 
innings 

Bowling  
Correlations 

Bowling 
innings 

Bowling 
 avge 

Bowling 
 Contrib 

Bowling 
res% 
avge 

LG ICC  
ratings 

Bowling 
innings 

1     

Bowling  
avge 

-0.272 1    

Bowling  
Contrib 

0.300 -0.580 1   

Bowling 
res% avge 

-0.422 0.746 -0.855 1  

LG ICC  
ratings 

0.375 -0.455 0.595 -0.628 1 

 

Bowling Correlations  
Table 4 summarises the correlations between the bowling performance measures and the 
number of innings played that produced them.   
 
Bowling average and Bowling resource (percentage) average are quite highly correlated 
(0.746) and in Table 3 it can be seen that there is only one name different in the top 12 of 
these two lists, with close agreement in their rankings.  Beaudoin and Swartz (2003) found 
an even higher correlation of 0.93 but used only the top 12 bowlers active at the time. 
 
In slight contrast to the situation relating to batting, the bowling contribution is only weakly 
correlated (0.300) with number of innings in which the bowler contributes.  There is only a 
slightly higher correlation (in absolute terms) between bowling average and number of 
innings, and less than the correlation of resource percentage average with bowling innings.  
Comments similar to those in relation to batsmen are therefore appropriate on the 
applicability of net contribution for comparing bowlers in the longer term. 
 



 52

All-round performances 
As the author has previously described (Lewis 2004, 2005), the net batting and net bowling 
contributions can be aggregated to provide a valid mechanism for comparing and 
aggregating batting and bowling performances.  This was shown to provide a mechanism 
for the comparison of batsmen and of bowlers, and in determining all-round performance in 
single matches and over a series of matches.  Beaudoin and Swartz (2003) suggest that their 
RM measures can be subtracted to yield an RM difference that assesses all-round ability.   
 
Table 5 summarises the several suggested all-round measures using net contribution, RM 
difference and the-recently-introduced LG ICC all-round rankings.  Table 5 provides the 
all-round information on the 18 players in this study who had batted and bowled in more 
than 12 innings and whose performances were sufficiently current that they retained an LG 
ICC rating for both batting and bowling.  The ranking of these qualifying players is 
provided according to their RM difference over the 16 one-day series considered in this 
paper  
 

Table 5: Summary of ‘all-round’ performance measures for qualifying players 

 
 

Player 

 
 

Country 

 
Total 

contrib 

Total 
contrib 

rank 

 
Batting 

RM 

 
Bowling 

RM 

 
RM 
Diff 

RM 
Diff 
rank 

LG 
ICC 
rank 

Flintoff Eng 365.4 1 299.8 216.3 83.5 1 1 
LeeB Aus 260.2 2 228.7 201.5 27.2 2  
Pollock RSA 142.5 4 227.1 202.0 25.1 3 2 
Lehmann Aus 88.6 5 283.6 259.2 24.4 4  
Cairns NZ 44.7 8 250.1 236.5 13.7 5  
Vettori NZ 42.6 9 235.9 226.3 9.6 6  
Symonds Aus 76.3 6 259.6 252.8 6.8 7  
Clarke Aus 154.3 3 264.9 267.7 -2.7 8  
Jayasuriya SriL 48.9 7 266.3 281.5 -15.2 9  
Gayle WI 25.4 10 221.7 241.2 -19.6 10 4 
Styris NZ -11.5 11 206.3 229.4 -23.1 11  
Collingwood Eng -36.8 15 243.1 267.2 -24.1 12  
Hogg Aus -26.6 14 192.8 224.9 -32.2 13  
Sehwag Ind -11.5 12 233.2 267.1 -33.8 14  
Kallis RSA -19.9 13 230.6 271.2 -40.6 15  
Vaughan Eng -56.8 16 219.8 271.4 -51.6 16  
Harris NZ -96.7 17 184.4 252.5 -68.1 17  
Ganguly Ind -100.9 18 202.4 273.3 -70.9 18  

 
Again, several interesting aspects of their rankings are raised.  By a considerable margin, 
Flintoff is rated the best all-rounder by all of the measures.  
 
As all bowlers get some opportunities to bat, in the modern game it is becoming more and 
more important for bowlers to improve their batting skills. This is not only to score runs, 
but also towards the end of the innings to support the other batsman who may be a higher-
order player capable of scoring many runs and guiding the team to victory.  Lee would be 
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regarded as a specialist bowler but he has acquired batting expertise of the nature 
mentioned and exhibited in the VB series of 2003  (Lewis 2004, 2005) and in subsequent 
series.  Pollock has also acquired a similar reputation.  
 
TOWARDS DUCKWORTH/LEWIS PLAYER PERFORMANCE INDICES 
This paper now proposes indices of player-performance. 

The DL Batting or Bowling Index 
The LG ICC ratings of teams, introduced in 2002 [http://www.cricketratings.com/ accessed 
5 Dec 2005], rank the major cricket playing countries using an index based upon 100 as the 
'average'.  Since such indices are now familiar to cricket enthusiasts, equivalent 
performance measures for players are now proposed. 
 
In Lewis (2004, 2005) a player's resource percentage average for a match is defined as 

si / pi∑∑ where the si are the runs scored on the ith ball remaining. The pi are the resources 
consumed for the ith ball remaining including the resource percentage consumed for the loss 
of the wicket at the terminal ball.  These are then summed over the balls received during his 
innings.   The resource percentage average Pa for the batsman's career to date would be 
Pa = sij / pij

i
∑

j
∑

i
∑

j
∑ where sij  now represents the runs scored from the ith ball remaining 

in the jth innings in his career.  There would be a similar quotient Pb for a bowler where the 
sij of runs conceded, would be replaced by sij + hij which includes the number of extras, that 
is, wides and no balls hij, which are charged against the bowler.  The pij are the resource 
percentages contributed by the bowling of balls and the taking of wickets. 
 
The average value of P(.) is Z(50,0)/100, namely 2.35 in the Standard Edition of the D/L 
model (Duckworth and Lewis, 2004) that is used in the analysis and applicable for the 
majority of the series of matches identified above.   
 
The proposed batting index Ia is defined as Ia =100Pa / Z(50,0)  and expressed as a 
percentage;  the higher the figure the better the evaluation of the batsman.  For a batsman 
such as Lehman (Aus) from Table 1, his batting index, Ia, would be 100*2.836/2.35 = 
120.7. This would be interpreted as assessing Lehman as a batsman performing at 20.7% 
above that of an average ODI batsman.   
 
The problem of the equivalent bowler's index is that good performance would generate a 
low index.  In order to preserve the nature of high indices representing good performance 
and high ranking, the proposal for the bowler's index is Ib = Z(50,0) /Pb . 
 
As an example, Lehmann from Table 3 would have a bowling index of 235/2.592 = 90.7.  
His bowling performances would be 90.7% of an ODI average bowler, which is 9.3% 
below average. 



 54

All round Index 
An all-round index Ir could be defined as the geometric mean of the batting and bowling 
indices so that Ir = Ia * Ib .  For Lehman, his all-round index would have the value of 

120.7 *90.7 =104.6 representing an all-round performance 4.6% above average. 
 
It will be seen that in Ir, the term Z(50,0) is eliminated so that the index is 
merely100 Pa Pb .  The removal of the D/L reference point means that an index of, say, 
104.6 may have arisen from many combinations of batting resource percentage average Pa 
and bowling resource percentage average Pb.  For Lehman these were 2.836 and 2.592 
respectively.  Another combination of say 1.845 and 1.686 respectively would yield the 
same all-round index of 104.6 but with a much stronger bowling than batting performance.  
Far from being a disadvantage to the proposed index it is suggested that the endless 
combinations in obtaining a given value of the index would be appreciated by aficionados 
of cricket statistics as providing quantitative support to discussion on who is, or was, the 
best all-round cricketer! 
 
Although the geometric mean is a recognised mechanism for the averaging of indices, there 
is arguably a very practical cricketing interpretation to its square; or simply the product of 
their batting and bowling indices and re-expressed as a percentage.  This interpretation 
would be that of the compound effect of the player's performance in the two disciplines.  
For Lehman, his all-round index would then be 109.4  providing  a compounded all-round 
performance measure 9.4% above that of an 'average' ODI cricketer. 
 
Table 6 summarises the various indices of all the players in this study who had contributed 
with bat and ball in more than 12 one-day innings and held LG ICC ratings that were 
current for both of cricket’s main disciplines.  These players' ratings and rankings include 
their DL, RM and LG ICC ratings for batting and bowling, and their rankings as all-
rounders.  Clearly, for ranking purposes, there is no difference between using the geometric 
mean or its square.  Table 6, however, records the square of the geometric mean as the DL 
all-round index. 
 
The LG ICC all-round rankings are also based on the product of the player's LG ICC 
ratings.  The website [http://www.cricketratings.com/ accessed 7 April 2006] ranks just the 
top five players deemed to be international all-rounders. 
 
The rankings of batsmen by the DL index are, of course, identical to that using the batting 
RM since the former is constant divisor of the latter.  The bowling rankings by the DL 
index are slightly different from the RM bowling rankings due to the reciprocal nature of 
the two contributing measures.  
 
The DL all-round index provides identical rankings to the RM difference for the top ten 
players.  Thereafter there are minor differences in the rankings of no more than one position 
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Table 6: DL indices for batting, bowling and all-round performance measures for qualifying 
players 

 
 
 
Player 

 
 
 
Country

 
 
 

RM diff 

 
RM 
diff 
rank 

 
LG-ICC
Batting 
rating 

 
LG ICC 
Bowling 
rating 

LG ICC
All-

round 
rank 

 
DL 

Batting
Index 

 
DL 

Bowling 
Index 

 
DL All-
round
Index

 
DL All 
round
rank 

Flintoff Eng 83.5 1 711 727 1 127.6 108.7 138.6 1 
LeeB Aus 27.2 2 346 819  97.3 116.6 113.5 2 
Pollock RSA 25.1 3 472 805 2 96.6 116.3 112.4 3 
Lehmann Aus 24.4 4 544 436  120.7 90.7 109.4 4 
Cairns NZ 13.7 5 588 624  106.4 99.4 105.8 5 
Vettori NZ 9.6 6 368 722  100.4 103.8 104.3 6 
Symonds Aus 6.8 7 660 515  110.4 93.0 102.7 7 
Clarke Aus -2.7 8 705 281  112.7 87.8 99.0 8 
Jayasuriya SriL -15.2 9 670 553  113.3 83.5 94.6 9 
Gayle WI -19.6 10 717 525 4 94.3 97.4 91.9 10 
Collingwood Eng -24.1 12 512 393  103.4 88.0 91.0 11 
Styris NZ -23.1 11 535 629  87.8 102.5 89.9 12 
Sehwag Ind -33.8 14 618 390  99.3 88.0 87.3 13 
Hogg Aus -32.2 13 407 627  82.0 104.5 85.7 14 
Kallis RSA -40.6 15 708 470  98.1 86.6 85.0 15 
Vaughan Eng -51.6 16 569 279  93.5 86.6 81.0 16 
Ganguly Ind -70.9 18 557 314  86.1 86.0 74.1 17 
Harris NZ -68.1 17 426 474  78.5 93.1 73.0 18 
 
It is felt, however, that Flintoff's clear first-place ranking, with an index of 138.6, would 
have more meaning in terms of a player whose combined performances rate him 38.6% 
above average than the equivalent RM difference of 83.5 runs.  To rate him as scoring on 
average 83.5 runs per match more than the opposition were he to do all of the batting and 
bowling himself, might stretch the abilities of interpreting this statistic rather more than the 
proposed DL all-round index. 
 
The LG ICC rankings provided in Table 6, as applicable on 31/05/05, are consistent 
amongst themselves but omit two all-rounders from Pakistan who have not qualified for 
inclusion in the analysis of this paper due to insufficient contributions with either bat or ball 
or both.  The LG ICC ratings are also unclear on the criteria by which a player is deemed an 
all-rounder for consideration within the rankings.  Indeed the site only ranks five players 
suggesting a dearth of players purporting to be international all-rounders.  Using the criteria 
above, the style of which could be easily applied in the LG ICC all-rounder rankings, there 
is no need for a subjective judgement as to whether the player is deemed to be an all-
rounder.  A substantial proportion of batsmen do not bowl and would therefore not meet the 
minimum bowling contribution requirement for inclusion.  But all bowlers will be required 
to bat at some stage. Subject to the minimum participation requirement, bowlers will thus 
acquire a batting index and hence an all-round index in due course.  It would then be ability 
in both disciplines of cricket that would indicate, or otherwise, that a bowler could be 
regarded as an all-round player.  Subjective judgment in this respect would therefore be 
removed.  For example, Lee (Aus) is rated highly by all measures in Table 3 as a bowler. 
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From Table 1, he has also made a small but positive net contribution of 13.9 runs with the 
bat even though his batting average is below 20 and his DL batting index is just below 100.  
In this study his combined performance has placed him in second place of the all-rounder 
list of Table 7.  Compared with countryman Lehman, who is a better batsman but a poorer 
bowler, Lee has performed slightly better overall. 
 
FURTHER STUDY 
The LG ICC ratings and rankings are designed to assess current form and contributions. As 
a consequence they have an inbuilt discounting procedure that weights recent performances 
greater than performances earlier in player's careers and also depreciates players' 
contributions more quickly when they are not selected, or are not available possibly through 
injury.  The LG ICC website, previously cited, provides an overview of the process of 
evaluating players but does not provide the detail of their calculations due to commercial 
confidentiality. 
 
In order to compare the D/L-based performance measures with the LG ICC ratings, it will 
be desirable to define a mechanism that discounts performances over time.  This will be the 
focus for continuing research toward fairer measures of player performance in one-day 
cricket 
 
SUMMARY 
This paper has looked at whether the measures of player performance called net 
contribution and resource percentage average for batsmen and bowlers are viable for the 
purposes of evaluating ODI cricket players in the longer term and over players' careers.  
Through the analysis of many series of matches covering a three-year time span and 
involving several of the world's regular and leading players it has been shown that there are 
limitations to the net contribution measure.  Whereas this measure was shown to be very 
effective in evaluating performances in single matches and for a series of matches with a 
major advantage of being able to assess all-round ability, the analysis in this paper reveals 
that the measure is unstable and depends very much on frequency of appearance.  The net 
batting contribution measure in particular is shown to depend clearly on the quantity of 
cricket that the batsman plays.  Data show that this is a problem also with the net bowling 
contribution but is not quite as severe. 
 
On the contrary, whereas the resource percentage average was shown to be unstable when 
applied in small numbers of matches, it becomes a more reliable and stable measure over 
the longer term.  But there is a problem over interpretation of resource percentage averages.  
Beaudoin and Swartz (2003) solve this by multiplying by 100 and calling the result Runs 
per Match that they interpret as the average performance of the batsman, or bowler, were he 
to do all of the batting, or bowling, himself.   
 
This paper proposes an index based on the ODI average of 235 runs per match giving 2.35 
as the average runs per percentage of resource.  As international country rankings are given 
in index form, it is suggested that the cricketing public might more easily accept this 
measure of performance. 
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The all-round measure of performance suggested in this paper is the product of a player's 
batting and bowling indices, which has the virtue of reflecting the compounding effect of 
performance in the two disciplines rather than through the geometric mean as a measure of 
an average all-round performance.  Beaudoin and Swartz suggest an RM difference with a 
'hard to swallow' interpretation of the average performance of the player were he to do all 
of the batting and bowling himself. 
 
Comparisons of rankings have been made with the LG ICC ratings, and show reasonable 
comparability for the players qualifying for the analysis summarised in this paper.   There 
are major differences in the methodology of these ratings in comparison with the methods 
proposed in this paper.  One is the limited information in a standard scorecard that is used 
to create the LG ICC ratings.  A second difference is the use of a discounting factor in the 
LG ICC ratings that attempt to assess current rather than career levels of performance. 
 
Further work on this aspect is suggested if the methodology of the measures proposed in 
this and the author’s previous papers  (Lewis, 2004, 2005) were to be either incorporated 
into the LG ICC ratings or to create a separate set of DL performance measures.   
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ABSTRACT 
 
While scoring strategies and player performance in cricket have been studied, there has 
been little published work about the influence of batting order with respect to One-Day 
cricket. We apply a mathematical modelling approach to compute efficiently the 
expected performance (runs distribution) of a cricket batting order in an innings. Among 
other applications, our method enables one to solve for the probability of one team 
beating another or to find the optimal batting order for a set of 11 players. The influence 
of defence and bowling ability can be taken into account in a straightforward manner. In 
this presentation, we outline how we develop our Markov Chain approach to studying 
the progress of runs for a batting order of non-identical players along the lines of work 
in baseball modelling by Bukiet et al. (1997). We describe the issues that arise in 
applying such methods to cricket, discuss ideas for addressing these difficulties and note 
limitations on modelling batting order for One-Day cricket. By performing our analysis 
on a selected subset of the possible batting orders, we apply the model to quantify the 
influence of batting order in a game of One Day cricket using available real-world data 
for current players.  
 
INTRODUCTION 
 
Many cricket commentators will suggest that certain players perform best as “Number 
Three” in the batting line-up. Listen to almost any commentary team during the course 
of a One-Day game and you will hear statements based upon rules of thumb like, 
“Ricky Ponting is a genuine number three.” This raises the question, is there really a 
“Batting Order Effect” and assuming there is, how would you test this? Suppose that a 
cricket coach decided to test every possible batting order for a team of 11 players, how 
many games would they have to play? With a team of 11 players, there are nearly 40 
million possible line-ups, thus if they could play 1 game every day, it would take a little 
more than 109286 years (assuming players lived and could play for that long). 
However, if one has data for the ability of each of the batsmen in a cricket lineup, one 
can apply techniques of mathematical modelling to ascertain how well a set batting 
order (against a specified set of bowlers) should perform. 
 
PREVIOUS RESEARCH 
 
There has been little published work about the influence of batting order with respect to 
One-Day cricket. The earliest work on mathematical analysis of cricket was by Wood 
(1945) and Elderton (1945) who studied whether cricketers’ scores follow geometric 
progressions. Starting in the late 1980’s and continuing up to the present, Clarke’s and 
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his group (e.g. Clarke (1988), Johnston et al. (1993) and Norman and Clarke (2004)) 
have studied cricket scoring strategies and player performance, among other cricket 
issues, by applying dynamic programming methods. Clarke (1988) addressed cricket 
strategies in terms of optimal run rates using dynamic programming techniques. 
Johnston et al. (1993) assessed player performance by dynamic programming and 
developed a ranking system to aid in assessing a player’s performance. Cohen (2002) 
studied the probability of dismissing a team before 50 overs and the geometric nature of 
scoring strokes. Norman and Clarke (2004) investigated the effect of a sticky wicket 
and how a batting team should adjust its line-up in the longer form of the game. 
Although Swartz et al. (2006) did study the problem of finding optimal cricket batting 
orders; their work has been from a statistical simulation, rather than a mathematical 
modelling perspective. Swartz, et al. (2006) devised a statistical method to compute the 
probability of each outcome for each batsman with corrections based on wickets and 
balls remaining. They then simulated games with various batting orders (10,000 games 
per batting order) and used simulated annealing to reduce number of choices of batting 
orders to consider. 
 
In the current work, we apply a mathematical modelling approach to compute 
efficiently the runs distribution of a cricket batting order in an innings. The approach, 
which will be described in the following section, uses Markov Chains and is based on 
the method developed by Bukiet et al (1997) that has been used over a number of years 
for the modelling of the run production in baseball. Among other applications, our 
method enables one to solve for the expected number of runs a batting order should 
score and the probability of one team beating another. By considering all 11! or 
39,916,800 batting orders, one could potentially find the optimal batting order for a set 
of 11 players, i.e., the batting order that can be expected to attain the most runs. The 
model is set up such that the influence of defence and bowling ability can be taken into 
account in a straightforward manner. As we note in later sections of this paper, the time 
it takes to analyse a single lineup using our technique is such that evaluating all possible 
lineups (full enumeration) would take a prohibitively long amount of time. Thus, 
presently, the model is mainly for theoretical purposes in terms of finding the best 
batting order, but it could be applied to address some questions. For example, by 
considering a selected subset of the possible batting orders for 11 Australian players and 
applying our model, we demonstrate that there is a difference between best and worst 
batting orders and that this difference is significant.  
 
METHODS 
 
In this paper, we outline how we develop our Markov Chain approach to studying the 
progress of runs for a batting order of non-identical players along the lines of work in 
baseball modelling by Bukiet, et al. (1997). We describe the issues that arise in applying 
such methods to cricket and how we have addressed the difficulties particular to cricket.  
 
In a Markov process, it is not important to know how a given situation arose, just that 
you are in a particular situation. The probability of going from one situation to any other 
is known. There are a finite number of situations.  
 
In the context of cricket, the dynamics of run production depends mainly on the 
interaction of the bowler and the batsman. So the game can be modelled as a sequence 
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of one-on-one interactions. A batsman takes a turn and then we stop and have a new 
situation. The probability of any occurrence depends only on the current situation (who 
is the facing batsman, who is the bowler, who is the batsman at the other wicket (the 
non-striker), how many balls are left) and possibly only a small subset of that. For the 
most part, there are only 7 states to which a given situation will commonly transition on 
a single bowl of the ball. 
 

• A batsman is dismissed and no runs score with probability Pd 
• Zero runs score (no dismissal) with probability P0 
• One run is scored (no dismissal) with probability P1 
• Two runs are scored (no dismissal) with probability P2 
• Three runs are scored (no dismissal) with probability P3 
• Four runs are scored (no dismissal) with probability P4 
• Six runs are scored (no dismissal) with probability P6 

 
Making the situation slightly more complex is the effect of the batsman switching 
places. If an odd number of runs are scored, the batsman will have switched ends. 
Similarly, if a multiple of six balls have been bowled, the bowler has finished the over 
and a new bowler will begin bowling from the other end, resulting in the non-striker 
becoming the facing batsman. (We note that it is possible, but uncommon to score 5 
runs.  Similarly, it is possible to score runs when a batsman is runout. We disregard 
these events, other rare offensive possibilities as well as rules concerning fielding 
restrictions. Our method could handle most of these at the cost of greatly increased 
computational time. It appears, at least in the case of modelling baseball that ignoring 
many rare situations makes little difference in the results as there is much cancellation 
between including positive events (e.g. fives) and negative events (e.g., runouts on run 
scoring balls)). 
 
Let the multidimensional Matrix M have entries M(b,r,w,b1,b2) represent the number of 
balls bowled, runs scored and wickets down, the next batsman and the batsman at the 
other wicket, respectively. For each number of balls bowled, we can compute the 
probability of being in a given situation by multiplying the (multidimensional) matrix 
representing the set of probabilities after the b-1 balls by the probability of each of the 
events listed above occurring. For example, the game begins with 0 balls bowled, 0 runs 
scored, 0 wickets gone and batsman number 1 about to hit, with batsman number 2 at 
the other wicket. Thus, M(0,0,0,1,2)=1 and all other entries of M(0,r,w,b1,b2) are zero. 
After the first ball, M(1,0,1,3,2) = Pd, M(1,0,0,1,2) = P0, M(1,1,0,2,1)=P1, M(1,2,0,1,2) 
= P2 and so forth. These values are obtained in the general case (b balls) by multiplying 
each non-zero entry of M(b-1,r,w, b1,b2) by each of the probabilities Pd, P0-P6 and 
placing the result in the appropriate location in the M(b,r,w,b1,b2). After the 
computation has considered 300 balls (with 10 wickets down causing no future balls to 
be bowled) we end up with the probability of any given number of runs having been 
scored (the runs distribution). The computation is actually simplified by looping 
through the number of balls and saving only the situation after b-1 balls to compute the 
situation after b balls. Also, one need not keep track of wickets dismissed since the 
batsmen currently in the game provide that information. (If batsman number 6 in the 
order is in the game, but 7-11 are not, then 4 batsmen have been dismissed). Thus, an 11 
X 11 X 1800 (batsmen X batsmen X runs) matrix needs be maintained and updated. We 
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note that the method automatically takes into account that the batsmen early in the 
lineup, if they are the best batters will face more balls than the later batsmen. Summing 
the product of each possible number of runs and its probability of being the result in the 
game gives the expected number of runs for the batting order considered.  
 
This strategy is the same in philosophy as that of Bukiet, et al (1997) only the details are 
modified. The strategy involves mathematically only addition, multiplication and some 
logic. The method makes sense only because cricket has the following properties: 
• Dynamics of run production depends mainly on interaction of bowler and batsman 

so the game can be modelled as a sequence of one-on-one interactions 
• There are a finite number of states in the game (batsman, outs, runs) 
• The probability of an occurrence depends only on current situation (to a reasonable 

approximation) (One can also implement run or score dependence). 
 
Some aspects of One-Day Cricket make it more complicated and lengthy to model than 
for baseball.  
• There are 11 players who bat on a team in an innings. Thus there are over 39 

million batting orders to consider in a full enumeration.   
• Up to 300 balls are bowled in an innings, in groups of 6 (an over). After each over 

has been completed, a different bowler bowls the ball from the opposite side of the 
field. (In baseball one can consider the situations as batter by batter and there are 
only about 50 batters up in a game for each team).  

• An odd number of runs scored on a ball results in the other active batsman batting 
next (unless this is the end of an over). 

• Bowlers switch sides at the end of an over and can only bowl a maximum of 10 
overs in a match. This makes some of the logic and bookkeeping more complicated. 

• Typical one-day cricket matches result in each team scoring 200-300 runs (much 
more than the 0-10 runs common in baseball, with extreme cases running up to 20 
runs for a team). In cricket, in theory a team could get up to 1800 runs, although the 
present record is 438 runs1. This increases run time and storage requirements. 

• Pd is very small for most batsmen, typically about 0.03 or less, which means outs 
are very rare when compared to baseball. 

• By comparison to baseball, players play in fewer games per year. As a result, small 
errors can have a larger effect on an individual player’s probabilities. 

• When the innings is nearing its end, batsmen begin taking more risks and score at a 
higher rate. Players who come in to bat with very few overs remaining will usually 
score at a higher rate than they normally would if they came in earlier in the 
innings. Only the first batsman has a non-zero probability of facing all 300 balls in 
a match. This could potentially skew the probability distribution (P0-P6) obtained 
from the data set for a later order batsman. 

• For one line-up a simply written code for 1-day cricket takes ~15 seconds on an 
average PC (up to 600 runs considered). To evaluate 11! ~ 40,000,000 line-ups 
such a code would take about 1000 days. 

                                                 
1 ODI #2349 South Africa v Australia at New Wanderers Stadium, Johannesburg on 12 March 2006, 
South Africa scored 9/438 in reply to Australia’s 4/434. Previous record was 5/398 scored by Sri Lanka in 
ODI #1074 Sri Lanka v Kenya at Asgiriya Stadium, Kandy during the 1995/96 Wills World Cup. Source: 
CricInfo 
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The large computational time involved using this straightforward approach (referred to 
later on as “the straightforward method” makes it unattractive as a planning tool for 
coaches, however some streamlining improves the performance. Instead of considering 
each batsman and each ball individually, we consider (in what we call our “streamlined 
method”) each pair of batsmen (11 x 10 pairs) and each over individually (50 overs). As 
a further simplification, we assume that a maximum of 1 wicket can fall in any given 
over; the result is about a 1 second improvement in processing time per line-up studied. 
 
To include bowling and defensive performance, one could scale the offensive 
characteristics in an appropriate way. For example, if a given bowler has performance 
level, say, 2% worse, than the average bowler, by some measure, then opposing players 
would have their offensive performance (P1-P6) increased by 2% and P0 decreased 
accordingly. Ideally, one would like to have enough data on how well each bowler 
performs against each batsman (and vice versa), but that is not likely to be the case. 
Another method of scaling batsman performance might take into account his 
“handedness”, that of the bowler, and/or the type of bowler (e.g., a spin bowler) 
bowling. One of the authors has looked into various methods of considering pitcher 
ability in baseball and found that considering such complications did not lead to 
improved results. 
 
RESULTS 
 
Using data gathered from the CricInfo website and that kindly supplied by Champion 
Data, we were able to find estimates (for various players) of the probability of scoring 0, 
1, 2, 3, 4 or 6 runs. Treating being not out at the end of a game as the same as being run 
out on the last ball, we can find an estimate for the probability of being dismissed. Table 
1 shows these estimates for 11 Australian players. These players have enough 
experience such that the data used takes into account at least 100 balls being bowled to 
each of the players and each player’s performance in at least 15 matches (except for 
Michael Slater2 and Glen McGrath3 as shown in Table 2). 

Table 1 

P0 P1 P2 P3 P4 P6 Pd Player 
0.513 0.311 0.071 0.006 0.083 0.012 0.027 Symonds 
0.561 0.230 0.055 0.013 0.128 0.011 0.027 Gilchrist 
0.546 0.297 0.067 0.014 0.070 0.004 0.019 Waugh, M. 
0.563 0.273 0.058 0.012 0.080 0.011 0.021 Hayden 
0.545 0.295 0.059 0.012 0.072 0.013 0.022 Ponting 
0.512 0.294 0.115 0.000 0.038 0.038 0.025 Slater 
0.533 0.319 0.060 0.004 0.060 0.020 0.051 Bichel 
0.526 0.332 0.071 0.005 0.026 0.032 0.083 Lee 
0.515 0.387 0.054 0.018 0.018 0.006 0.109 Gillespie 
0.687 0.234 0.046 0.000 0.031 0.000 0.250 McGrath 
0.555 0.324 0.072 0.003 0.039 0.004 0.051 Warne 

                                                 
2 The data collected did not have many matches including Michael Slater, although he has played 42 
matches for Australia 
3 Glen McGrath normally is the last batsman in the Australian batting lineup. This limits the amount of 
data available on his performance. 



 63

The probabilities P0-P6 above sum to approximately 1 and are the distribution of 0-6 
runs scored by the players whilst not being dismissed. The probability of dismissal, Pd, 
is calculated as the number of innings played divided by the number of balls faced. 
Whilst this does not account for innings in which the player does not get dismissed, this 
error in the data is small when a player has played many innings and unlikely to be as 
large as the error caused by using small data sets (e.g. a single innings). The data from 
Table 1 can also be used to determine the expected runs if the team were made up of 
only 1 player occupying all 11 places, which then enables us to rank the players. This 
ranking, computed when limiting runs to 600, is shown in Table 2. 

Table 2 
Player Runs per innings Rank Balls Innings 
Symonds 244.04 3 2096 57 
Gilchrist 263.89 1 4203 117 
Waugh, M 202.15 5 2477 49 
Hayden 216.39 4 3401 73 
Ponting 177.64 6 5056 112 
Slater 254.57 2 78 2 
Bichel 148.66 7 444 23 
Lee 61.31 9 334 28 
Gillespie 53.95 10 165 18 
McGrath 13.60 11 64 16 
Warne 120.13 8 635 33 

 
Using this ranking, we compute the expected runs using the “straightforward 
method” when the players are ordered in Best-Worst ranked order (Gilchrist bats 
first, Slater second, Symonds third and so forth), the given order and Worst-Best 
ranked order. These expectations are shown in Table 3. 

Table 3 
Best-Worst Ranked Order 210.66 runs
Given Order 208.75 runs
Worst-Best Ranked Order 194.16 runs

 
To enable us to consider a greater number of batting orders, we used our “streamlined 
method” to evaluate about 10,000 line-ups, permuting only the last 8 players. we find 
that the minimum number of expected runs is approximately 219 compared with a 
maximum of almost 229. These results are higher than those achieved before the 
streamlining and is most likely due to the restriction on the number of wickets than can 
be lost per over. Table 4 shows a comparison of results achieved using the 
straightforward and streamlined methods. The line-up used in generating tables 1-4 uses 
players (like Mark Waugh) whom no longer play for Australia, but each player has 
played at least 10 games at the international level. Suppose, however, that we wish to 
replace 4 players with current or new players, like Hussey and Hodge. Table 5 shows 
the estimated probability distributions using the same source data. (Here, each player’s 
data only includes at least 2 games and 50 balls bowled to him, to allow for newer 
players, as shown in Table 6 except for Stuart MacGill4.) 
                                                 
4 Stuart MacGill normally bats after Glen McGrath when both are playing for Australia (see Footnote 2). 
This also limits the amount of data available on his performance. 
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Table 4 

Player Runs/Inn Straightforward Runs/Inn Streamlined 
Symonds 244.04 249.29 
Gilchrist 263.89 269.91 
Waugh, M 202.15 203.06 
Hayden 216.39 217.92 
Ponting 177.64 178.88 
Slater 254.57 258.88 
Bichel 148.66 165.98 
Lee 61.31 69.63 
Gillespie 53.95 68.96 
McGrath 13.60 23.68 
Warne 120.13 134.19 

 
Table 5 

P0 P1 P2 P3 P4 P6 Pd Name 
0.553 0.313 0.048 0.010 0.075 0.003 0.015 JL Langer 
0.563 0.273 0.059 0.012 0.080 0.011 0.021 ML Hayden 
0.545 0.295 0.060 0.012 0.073 0.013 0.022 RT Ponting 
0.412 0.471 0.039 0.039 0.039 0.000 0.039 BJ Hodge 
0.522 0.317 0.064 0.016 0.074 0.006 0.022 MEK Hussey 
0.514 0.312 0.072 0.007 0.083 0.013 0.027 A Symonds 
0.561 0.231 0.055 0.014 0.128 0.011 0.028 AC Gilchrist 
0.556 0.324 0.072 0.003 0.039 0.005 0.052 SK Warne 
0.527 0.332 0.072 0.006 0.027 0.033 0.084 B Lee 
0.714 0.286 0.000 0.000 0.000 0.000 0.286 SCG MacGill 
0.688 0.234 0.047 0.000 0.031 0.000 0.250 GD McGrath 

 
Table 6 shows, like Table 2, the expected runs if these players made up the entire line-
up (using the streamlined method with a maximum of 1800 runs allowed).  
 
Using this data we compute the expected runs from a convenient subset (163,724 
samples at this time) of batting line-ups, namely, those line-ups with the openers and 
some with the third batsman already determined. Table 7 shows a brief analysis of the 
data. It is interesting to note that the mean is almost exactly 235, which is also the 
current value of the G50 constant in the Duckworth/Lewis method for target resetting. 
Figure 1 shows a histogram of these results. We note that the distribution is unimodal, 
has small variance, but is highly skewed with large number of outliers. The line-ups that 
produced the minimum and maximum number of expected runs (among the 163,724 
lineups studied) are shown in Table 8. 
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Table 6 
Name Exp_Runs Rank Balls Innings 
AC Gilchrist 281.34 1 4203 117 
A Symonds 259.20 2 2096 57 
MEK Hussey 242.79 3 312 7 
RT Ponting 241.75 4 5056 112 
ML Hayden 240.17 5 3401 73 
BJ Hodge 239.58 6 51 2 
B Lee 232.00 7 334 28 
JL Langer 222.43 8 400 6 
SK Warne 192.78 9 635 33 
GD McGrath 128.37 10 64 16 
SCG MacGill 80.06 11 7 2 

 

Table 7 
Mean 235.1
Sample Variance 95.2
Mode 209.8
Count 163724
Minimum 187.6
First Quartile 234.1
Median 236.9
Third Quartile 239. 5
Maximum 257.6
Range 70.0
IQR 5.4

 

Table 8 
Batsman Minimum Maximum 
1 JL Langer JL Langer 
2 ML Hayden ML Hayden 
3 BJ Hodge A Symonds 
4 GD McGrath AC Gilchrist 
5 SK Warne SK Warne 
6 SCG MacGill MEK Hussey 
7 AC Gilchrist B Lee 
8 B Lee SCG MacGill
9 MEK Hussey GD McGrath 
10 RT Ponting RT Ponting 
11 A Symonds BJ Hodge 
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Figure 1: Histogram of expected number of runs for 164,724 line-ups  

taken from the players listed in Table 6 

 
 
DISCUSSION AND CONCLUSION 
 
Cricket is a game with many variables affecting the outcome; the weather, the pitch, the 
players and even the spectators at the match.  Attempting to model a cricket match 
requires reducing these many variables down to a manageable and quantifiable subset. 
In this paper we have attempted to simplify these many variables down to the batsman's 
average offensive ability versus every bowler they have faced (within the available data 
set). We have developed a straightforward and a streamlined approach for evaluating 
the distribution and thus, the expected number of runs a line-up should produce against 
average bowling. The large number of possible line-ups makes a “straightforward” 
approach to finding the optimal batting order virtually impossible to achieve in a 
reasonable time frame, however smaller subsets could be calculated rather quickly. This 
means that the most practical use of our work would be in determining the order of 
three or four batsmen with the rest of the line-up fixed. Our work could also be used to 
quantify the effect of the "super-sub" under the new laws of the One-Day game. 
 
We find it interesting that the results of our model show a mean expected number of 
runs scored of almost exactly 235. Since we were not able to study all 40 million line-
ups, we have shown for the set of players considered that the best batting order can 
expect to produce at least 70 runs more than the worst possible line-up. Figure 1 
suggests that it is easier to find a very poor line-up than it is to find a very good one. We 
expect the result of allowing for slight variations in player ability will have a similar 
effect to such variations in baseball player ability as studied by Sokol (2003). That is, 
that while our technique will find (given enough computation time) the line-up with the 
greatest expected number of runs, slight variations in player performance ability would 
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result in a different line-up being “better”. In other words, the best line-up is not robust. 
However, any of a set of nearly optimal line-ups would be indistinguishable within the 
limit of accuracy of the input probabilities. 
 
Whilst we have done a large number of calculations and streamlined the code, we see 
that it is unlikely that the calculations could be finished (on a single computer) within a 
reasonable timeframe. However, we see other opportunities for future work and 
applications, for example: 1) We could study optimal batting order and impact of 
batting order on probability of winning a game. Although we may not perform a full 
enumeration, there are ideas which would allow us to study likely subsets (e.g. Swartz); 
2) The data collection in One-Day Cricket is more difficult than baseball. We would 
like to obtain more data and more team information, but perhaps we could investigate 
ways of interpolating using available data; 3) We could expand our model to include 
bowling ability (defence) as was done for baseball (e.g. Bukiet, 1997); 4) A further 
extension of the model would be to compute the probability of winning a game and the 
effect of using one player instead of another (e.g. the “rotation” policy effect). 
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ABSTRACT 
 
Naismith’s Rule, a guide for people walking in mountainous country, suggests allowing 
20 minutes for each mile as the crow flies and 30 minutes for each thousand feet of 
ascent.  The rule thus suggests that one foot of ascent is equivalent to 7.92 feet on level 
ground. In this paper, we review results from various sources to estimate the 
equivalence of height climb and distance as the crow flies - the “N-value”, signifying 
that one foot of climb is equivalent (in time taken) to N feet on the level.  Naismith’s N-
value is thus 7.92.  The sources include results from fell races in the UK, the Catskill 
mountain road race, the Barr Trail mountain race, treadmill experiments and a paced 
running event conducted at a constant work rate. The N-values vary from 2.8 for the 
treadmill to 8.6 for winners of UK fell races.  It is suggested that the following factors 
may give rise to higher N-values: greater difficulty of terrain (decreasing “runability”); 
increased congestion, making it difficult to pass other runners, especially on ascents; the 
tendency of competitive runners to work harder on ascents than on the flat. Taken with 
results of previous work, these conclusions suggest that, if he has a choice, a runner 
does well to run directly up slopes of less than 1 in N, but to zigzag up slopes greater 
than that, keeping to a gradient of 1 in N.   
 
KEY WORDS  
Naismith’s rule, running uphill 
 
INTRODUCTION 
 
Naismith’s Rule, a guide for people walking in mountainous country, suggests allowing 
20 minutes for each mile as the crow flies and 30 minutes for each thousand feet of 
ascent.  Variations of the Rule have been suggested: an example (Hayes and Norman 
1994) is Hayes’s rule for runners attempting the arduous Bob Graham round (72 miles 
and 27,000 feet of ascent in 24 hours).  Hayes suggests: 

(1) Flat or uphill.  Allow 10 minutes per mile + 10 minutes per 1000’ of ascent 
(2) Gentle downhill (under 500’ per mile). Allow eight minutes per mile 
(3) Steep downhill (over 500’ per mile) Allow 10 minutes per mile + two minutes 

per 1000’ of descent 
(4) Rough ground on flat, uphill or gently downhill sections. Allow 15 minutes per 

mile + 15 minutes per 1000’ of ascent 
(5) Rough, steep downhill.  Allow 10 minutes per mile + 10 minutes per 1000’ of 

descent. 
 
Naismith’s rule suggests that one foot of ascent is equivalent to 7.92 feet on level 
ground.  Hayes’s rule suggests that one foot of ascent is equivalent to 5.28 feet on the 
level.  Scarf (in press) has analysed the record times for the 300 or so races in the 1994 
fell racing calendar and derived formulas for the expected times for men and women 
shown below: 
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For men,    E(t) = 2.09(x + 8.6y)1.14   (1) 
and for women  E(t) = 2.14(x + 10.6y)1.16   (2) 
where x is the distance as the crow flies and y the climb, both measured in kilometres, 
and E(t) the expected time, measured in minutes.  The power term is sometimes 
interpreted as a fatigue factor: essentially, it takes account of the fact that runners run 
slower in longer races. Scarf calls the term inside the brackets the “equivalent distance”. 
He thus suggests that for men, one foot of ascent is equivalent to 8.6 feet on level 
ground, while for women, the ratio is 1:10.6. 
 
Other work has used Naismith’s idea of a proportional allowance for climb directly, 
without a power term, in effect using a formula 
      T = (x + Ny)/v    (3) 
where  x and y are defined as before, v is the runner’s speed (km/minute) and T is the 
runner’s estimated time (minutes).  Analysis of treadmill experiments (Davey et al 
1994,1995) and the records of a mountain road race (Norman 2004) have resulted in 
estimates of N = 2.8 for the former and N = 4.4 for the latter.  We may wonder why 
these two values are different and whether the simple approach giving rise to equation 
(3) is compatible with the sophisticated statistical approach which results in equations 
(1) and (2).  In this note, we analyse results from two running events, the first a 
mountain race held annually in the United States and the second a paced endurance 
event which takes place around midsummer in the Lake District in England. The data 
for the first event have been obtained from the Internet (http://www.runpikespeak.com 
accessed 24.8.2005). 
 
THE BARR TRAIL MOUNTAIN RACE 
 
This race takes place annually at Pikes Peak National Park in Colorado.  It “starts at the 
Cog Railway Depot at an elevation of 6,570’.  The race proceeds 6 miles up the Barr 
Trail gaining 3,630’ where it turns around at Barr Camp at 10,200’.  Runners then head 
back down the Barr Trail to Hydro Street where they turn left and up with the finish 
being in the pullout to the right for a total of 12 miles”. Apart from four short “gentle 
downhills”, the first half of the race is uphill all the way and apart from these and the 
“nasty little hill where you finish your race at 6,650’ ”, the second half of the race is 
downhill almost all the way.  We shall lose little in accuracy and gain much in 
simplicity if we disregard the nasty little hill at the end and regard the race as 6 miles 
gaining 3,630’ followed by the same 6 miles losing 3.630’.  
 
Using equation (3) and defining Tu and Td  as the estimated uphill and downhill times, 
then we may write 
    Tu = (x + Ny)/v    (4) 
and    Td  = x/v     (5) 
so that            Tu/Td  = 1 + Ny/x     (6) 
 
Split times are given for all runners so this ratio may be computed for individuals.  In 
the 2004 race, the 231 male finishers had a mean ratio of 1.70, with a standard deviation 
of 0.15.  Substituting in equation (6) with x = 9.6 and y =1.10 (measured in km) gives a 
value for N of N = 6.0.  A similar calculation for the 95 female finishers results in a 
mean ratio of 1.73 with a standard deviation of 0.15 resulting in a value for N of N = 
6.4. 
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DISCUSSION 
 
These N-values are higher than those given previously for running on a treadmill and in 
a mountain road race and it may be helpful to set them out with some notes on the 
running conditions.   
 
Treadmill running N = 2.8.  No wind resistance and some “give” underfoot.  Similar 
experiments  (Margaria et al 1938,1963,1976) suggest N = 2.5.  Obviously, there is no 
congestion, but it may be that a different style of running from that used in the open is 
used. Some writers have questioned whether treadmill training is useful for the serious 
athlete (http://www.pponline.co.uk/encyc/treadmill.html accessed 24.8.2005) 
 
Road running in the Catskill Mountain Road Race. N = 4.4.  Unchanging surface 
underfoot and no congestion, and thus no difficulty in passing other runners. This is a 
feature of the Catskill race not normally found in road races, or in races generally.  
 
Trail running in the Barr Trail Mountain Race. N = 6.0.  Varied surface underfoot and 
some congestion. There is some asphalt surface at the start and finish and though much 
of the surface has been described as “smooth”, it is certainly not as smooth as an asphalt 
road surface..     
 
These N-values are all lower than the value of N = 8, suggested by Scarf for winners of 
fell races.  The notes above, however, suggest that the values of N increase with the 
severity of the terrain and perhaps with the degree of congestion as runners try to pass 
each other.  As Scarf remarks, “in fell races, steeper paths will in general be in poorer 
condition than more moderately inclined paths. Consequently, steeper paths may be 
slower not just as a result of the extra climb but because of the reduced runability”. 
 
PACED RUNNING IN THE BOB GRAHAM ROUND 
 
Point (1) of Hayes’s rule suggests an N-value of 5.3, but runners attempting the Bob 
Graham round are generally supported by other runners who pace them. There is 
virtually no congestion, though some complicating factors arise not found in other 
events.  For example, most successful runners complete the course in little under 24 
hours and consequently run some of it in darkness.  The data for the second event relate 
to a successful completion of the Bob Graham round and were derived by M.H. 
 
Hayes acted as a pacer for two fell runners attempting the Bob Graham Round, who 
were supported by other fell runners from the Dark Peak Fell Runners Club on different 
sections of the Round.  Hayes’s section was the 22.5 km stretch in the Hellvellyn range 
from Dunmell Raise to Threkeld,  The two runners, on arriving at Dunmell Raise, had 
already been running for 13 hours.  Accompanied by Hayes, they then ran 22.5km, with 
ascents totalling 1679 metres and descents totalling 1664 metres.  Hayes, an 
experienced fell runner, knew the route well, and made only one navigational error, 
losing about 5 minutes between Great Dodd and Calfhow.  Hayes wore a heart rate 
monitor and used it to check that his pace never deviated much from 140 beats per 
minute, so as to maintain a constant work rate.  To quote Hayes’s account, ”no action 
was taken if the heart rate was between 135 and 145.  If it exceeded 145, pretty strong 
measures were taken to rein in the leading contestant and get him to slow down.  If it 



 71

fell below 135, constant encouragement was given to the trailing contestant in an effort 
to get him to increase his pace”.   
 
Hayes timed the contestants at the beginning and end of each of 21 sections of the stage 
and the four rest stops.  He had previously recorded the distance on the ground and the 
vertical height gains and losses, all in metres, in each of the 21 stages.  This formed the 
basis of a later statistical analysis.  In brief, discarding the Great Dodd to Calfhow 
section and taking no account of descent, estimated time was given by: 
Estimated time = .041 +.009*distance + .052*height gain 
with an adjusted R2 = .980.  The coefficients of distance and height gain had p-values 
<.001.  The p-value of the constant term was .956.  Forcing the regression equation 
through the origin resulted in the following equation: 
Estimated time = .0086*distance + .0522*height gain.   
The corresponding N-value =.0522/.0086 = 6.1. 
 
This N-value is again less than the N-value of 8 found by Scarf in his analysis of fell 
race winners. On the Bob Graham Round section, there was no congestion, but parts 
were run in darkness.  The main identifying characteristic, however, shared only with 
the treadmill experiments, is that of a constant work rate, measured by heart rate.  
Perhaps fell runners in a race, competing for the lead, exert themselves more on ascents 
than on descents and on the level, increasing the time they take over what they might 
accomplish in even-paced running.   
 
CONCLUSION 
 
In this note, we have reviewed results from several sources to estimate the equivalence 
of height climb and distance as the crow flies – the N-value, signifying that one foot of 
climb is equivalent (in time taken) to N feet on the level.  Considerable variation in the 
N-values was noted, ranging from N = 2.8 or the treadmill to N = 8.6 for male winners 
of fell races.  Some possible reasons for the various values have been suggested.   
 
The remark that follows can only be conjectural, though the commentary above shows 
that there is support for it.  The following factors may give rise to higher N-values: 
 greater difficulty (more difficult runability) of terrain 
 increased congestion, making it difficult to pass other runners, especially on ascents 
 the tendency of competitive runners to work harder on ascents than on the level 

A final note.  A recreational runner may be concerned with only the first of these 
factors.  If the conclusions of Davy et al (1994,1995), based on running on a treadmill, 
can be applied to running outdoors, then the results of this paper suggest that, if he has a 
choice, a runner does well to run directly up slopes of less than 1 in N, but to zigzag up 
slopes greater than that, keeping to a gradient of 1 in N. 
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ABSTRACT 
 
Relative to other team games, the contribution of individual team members to the overall 
team performance is more easily quantifiable in cricket. Viewing players as securities and 
the team as a portfolio, cricket thus lends itself better to the use of analytical methods 
usually employed in the analysis of securities and portfolios. This paper demonstrates the 
use of stochastic dominance rules, normally used in investment management, to analyze the 
One Day International (ODI) batting performance of Indian cricketers. The data used span 
the years 1989 to 2005.  
 
In dealing with cricketing data the existence of ‘not out’ scores poses a problem while 
processing the data. In this paper, using a Bayesian approach, the ‘not-out’ scores are first 
replaced with a conditional average. The conditional average that is used represents an 
estimate of the score that the player would have gone on to score, if the ‘not out’ innings 
had been completed.  
 
The data thus treated are then used in the stochastic dominance analysis. To use stochastic 
dominance rules we need to characterize the ‘utility’ of a batsman. The first derivative of 
the utility function, with respect to runs scored, of an ODI batsman can safely be assumed 
to be positive (more runs scored are preferred to less). However, the second derivative need 
not be negative (no diminishing marginal utility for runs scored). This means that we 
cannot clearly specify whether the value attached to an additional run scored is lesser at 
higher levels of scores. Because of this, only first-order stochastic dominance is used to 
analyze the performance of the players under consideration. While this has its limitation 
(specifically, we cannot arrive at a complete utility value for each batsman), the approach 
does well in describing player performance. Moreover, the results have intuitive appeal.   
 
KEY WORDS 
 
Bayesian, utility function, batting average, conditional average, geometric distribution 
 
INTRODUCTION 
 
As a game, cricket is a statistician’s delight. Each game of cricket throws up a huge amount 
of performance related statistics. As other games have evolved and developed, they too 
have become richer in the use of performance statistics. For example, use of statistics like 
‘unforced errors’ in lawn tennis or ‘assists’ in basketball is increasingly becoming popular. 
However in cricket these statistics have always been part and parcel of the game. Cricket is 
one of the few games in which a ‘scorer’ is required to continuously maintain statistical 
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data on key game/player-specific performance statistics. It is one of the few games that 
have detailed ‘scoring sheets’. These scoring sheets were maintained manually in the pre-
digital age and are maintained electronically today. 
 
In spite of this legacy and long history of maintaining statistical data, two aspects 
associated with cricketing data are striking. The first is the idiosyncrasy that has persisted 
in the treatment of the ‘not out’ scores of a player. The second is the lack of effort in 
exploiting the richness of data to improve the representation of player performance. 
 
 The batting average of player i, Ri, is computed as: 
 
Ri = ΣRit / (n-k)          (1) 
 
Where: 
 
Rit is the number of runs scored by the i th player in the t th innings; 
n is the total number of innings in which the i th player has batted and  
k is the number of innings in which the i th player has remained ‘not out’.  
 
Equation (1) introduces an upward bias in the average. This bias is caused because the 
numerator is the total runs scored over all innings while the denominator excludes the 
innings in which the player has remained ‘not out’. This bias cannot seemingly be avoided. 
Taking the denominator to be n instead of n-k would instead introduce a downward bias in 
the average. A similar problem arises while preparing the input data required for the 
stochastic dominance rules developed later in the paper. The input data that is required is 
the innings-by-innings runs scored by the player. What should be done with the scores for 
the innings in which the player has remained ‘not out’? This paper first proposes a method 
to deal with this problem. 
 
The second aspect of cricketing data is the scant attention that has been focused by 
researchers on certain aspects of cricket. A substantial portion of the work has focused on 
devising optimal playing strategies. The strategies studied have either focused on batting 
strategies (Clarke, 1988; Clarke and Norman, 1999; Preston and Thomas, 2000; Swartz et 
al., 2006) or on bowling strategies (Rajadhyaksha and Arapostathis, 2000). A fair amount 
of work has also focused on the problem of arriving at a fair result when a game has to be 
prematurely terminated due to weather conditions or other disturbances (Duckworth and 
Lewis, 1998; Preston and Thomas, 2002; Carter and Guthrie, 2004).  
 
The third stream of work, on the understanding and development of player-specific 
performance statistics, (Wood, 1945; Kimber and Hansford, 1993; Lemmer, 2004; Lewis, 
2005), has received little attention. Cricket, with its slow pace and non-continuous nature, 
is a very television-friendly game. It allows viewers the leisure of watching replays without 
impinging on real-time action. It thus allows for the presentation of a vast amount of 
descriptive statistics during the course of a game. In spite of this feature of the game and 
the long history of the game, cricket commentators sometimes seem to feel constrained by 

n 

 t=1 



 75

the inability of performance statistics to really describe player performance. Comments like 
“Statistics don’t say everything” are very commonly heard.  The attention devoted by 
researchers to this aspect of cricket, therefore, seems surprisingly scant in relation to its 
importance and relevance. 
 
This paper seeks to develop methods to assess the performance of batsmen in cricket that 
(i) makes use of more information than current methods do and (ii) can be converted into 
visually appealing graphics for the television medium. The method is demonstrated using 
player statistics for the some of the key members of the Indian One Day International 
(ODI) cricket team between 1989 and 2005. The names of the players included in the study 
are listed in Table 1.  
 
METHODS 
 
The primary measure of a batsman’s performance in cricket today is the player’s batting 
average defined as in Equation (1). This measure suffers from the shortcoming that it is a 
one-dimensional number and does not capture the richness of the underlying data. Though 
cited very often, this measure fails to capture the various facets of a batsman. It does not 
provide answers to many questions that arise during the course of a game. These un-
addressed concerns or questions feature often in the comments of cricket commentators. 
For example, commentators of the game are found to say “Player X is a dangerous player 
once he is set”. Or “Player X has the ability to convert a good start to a big score”. Or 
“Though his average does not reflect it, Player X is a more consistent performer than Player 
Y”.   
 
Adjusting the raw data 
The raw data used in the development of any method for representing a batsman’s 
performance are the innings-by-innings runs scored by the player. However, using this raw 
data poses a problem. In some of the innings the batsman would not have been dismissed. 
In such cases the score would not reflect the number of runs the player could potentially 
have gone on to score. The scores for these innings (the ‘not out’ situations) have thus to be 
replaced by a number that is a good estimate of the number of runs the player would have 
scored had he batted on.  
 
In an early work Wood (1945) had provided empirical support to support the claim that a 
batsman’s scores follows a geometric distribution. Under this assumption, because of the 
memoryless property of the geometric distribution, a batsman’s chance of getting out is 
independent of the score he is on. This assumption can be used to arrive at an estimate of 
the number of runs a ‘not-out’ player would have scored had he batted on. However, the 
assumption of a geometric distribution for a batsman’s scores might not hold for all players. 
There may be some players who are ‘slow starters’ and who therefore do better as they 
progress. There may be other players who become more adventurous as their score 
increases. For such adventurous players their chances of getting out might increase as their 
score increases.  
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Kimber and Hansford (1993) did consider deviations from the geometric distribution, but 
their focus was on arriving at an optimal estimator for the population mean. On the other 
hand, we need a method to arrive at an estimate of the number of runs a ‘not out’ batsman 
would have gone on to score. A Bayesian approach has been adopted in this paper to arrive 
at this estimate. This is achieved in the following manner.  
 
Assume that in his j th innings player i remains ‘not out’ on a score of Rij. Define a binary 
variable Grik such that: 
 
Grik = 0 if Rik< Rij and = 1 if Rik>=Rij for k = 1, 2,….j-1    (2) 
 
Define nij = Σ Grik         (3) 
 
Define Cik = 0 if Rik< Rij and = Rik if Rik>=Rij for k = 1, 2,….j-1   (4) 
 
The estimate of the number of runs that the ‘not-out’ batsman would have gone on to score 
is then given by: 
 
Eij = Σ Cik/ nij          (5) 
 
In other words, the estimator used for the runs that the ‘not out’ batsman would have gone 
on to score is the conditional average of the batsman at that point of time, given that he has 
already scored a certain number of runs. In every instance of a ‘not out’, the batsman’s 
score in that innings j is replaced by the estimate Eij. This approach has the advantage of 
handling deviations from the geometric distribution assumption. It is also information 
efficient, with the posterior values of the conditional average incorporating more 
information on the batsman’s performance. Table 2 gives an example of the computational 
procedure used for finding the replacement values for the first two ‘not outs’ in the career 
of one member of the Indian ODI team, Sachin Tendulkar. 
 

Table 1: Names of Players Included in the Study 

Serial 
Number 

Player Serial Number Player 

1 S. Tendulkar 11 A. Nehra 
2 A. Kumble 12 M. Kaif 
3 S. Ganguly 13 M. Karthik 
4 R. Dravid 14 S. Bangar 
5 A. Agarkar   
6 V.V.S. Laxman   
7 H. Singh   
8 V. Sehwag   
9 Z. Khan   
10 Y. Singh   

j-1 
k=1 

j-1 

k=1 
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Table 2: Replacing ‘Not Out’ Scores with Estimates of Runs Likely to Have Been Scored 
by a Batsman: Sachin Tendulkar’s first 15 ODI Innings 

Sl. No. Runs 
Scored 

Whether 
Dismissed 

Adjusted 
Score 

Remarks 

1 0 Y 0  
2 0 Y 0  
3 36 Y 36  
4 10 Y 10  
5 20 Y 20  
6 19 Y 19  
7 31 Y 31  
8 36 Y 36  
9 53 Y 53  
10 30 Y 30  
11 4 Y 4  
12 53 Y 53  
13 52 N 53 Average of Sl Nos. 9,12 
14 22 Y 22  
15 11 N 35 Average of Sl Nos 

3,5,6,7,8,9,10,12, 13 (adjusted), 
14 

 
Stochastic Dominance 
The adjusted raw data is now used to arrive at an analytical representation of the player’s 
batting performance. The approach adopted draws from methods normally used for the 
analysis of securities and portfolios in investment management.  
 
The focus in investment management is on wealth creation. The problem of portfolio 
choice is that of selecting a portfolio that maximizes the utility for the investor. The utility 
function for the investor attaches a utility to various levels of wealth. The utility function 
can be constrained to have certain properties like non-satiation (more wealth is always 
preferred to less) or risk aversion (diminishing marginal utility for incremental units of 
wealth). In mathematical terms the first constraint requires the first derivative of the utility 
function to be positive. Again, in mathematical terms the second constraint requires the 
second derivative of the utility function to be negative.  
 
Consistent with some of the above-listed features of utility functions, the traditional 
approach to the portfolio selection problem has been the mean-variance approach. Amongst 
the alternative approaches to the portfolio selection problem suggested in the investment 
management literature is the set of stochastic dominance rules (Levy, 1973; Ali, 1975; 
Bawa, 1978). To use stochastic dominance rules we need to characterize the utility function 
of the investor. According to the first-order stochastic dominance rules a portfolio A is 
preferred to another portfolio B if, for any level of return, the cumulative probability of 
portfolio A giving a return lesser than the given level of return is never greater, and 
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sometimes less, than the cumulative probability of portfolio B giving a return lesser than 
that given level of return. This rule is consistent with the assumption that in the investors’ 
utility function more wealth is preferred to less. (Elton and Gruber, 1997)   
 
Analogous to the portfolio selection problem, a similar approach is adopted in this paper to 
represent the batting performance of cricketers. Using this approach we can say that a 
batsman A’s performance is better than another batsman B’s if, for any level of score, the 
probability of batsman A getting a score greater than the given score is never lesser, and 
sometimes greater, than the probability of batsman B getting a score greater than that given 
score. This rule corresponds to the first-order stochastic dominance rules and assumes that 
more runs are always preferred to less.  
 
The cumulative probability charts of various batsmen can now be charted with runs on the 
X-axis (with the origin as zero) and the probability of scoring more runs than the X-axis 
value of the score (that is one minus the cumulative probabilities of scoring lesser than the 
X-axis value of score) on the Y-axis. Visually this would mean that a batsman whose 
stochastic dominance curve envelops another’s curve stochastically dominates the other 
batsman.    
 
RESULTS 
 
The method is demonstrated using data for the Indian ODI cricket team spanning the years 
1989 (the year one of India’s most highly rated players, Sachin Tendulkar, made his debut) 
to 2005. This period was chosen because this was a period during which the compositional 
changes in the Indian ODI team were very few. A sample batting performance stochastic 
dominance chart output for five Indian players is given in Figure 1.  
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Figure 1: Sample Stochastic Dominance Curves 
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Four of the five players represented are essentially specialist batsmen (Tendulkar, Dravid, 
Sehwag and Laxman) and one a specialist bowler (Khan). The results are interesting and 
have intuitive appeal. They are consistent with popular notions regarding the batsmen 
whose performances were studied. For example, the curve for Sachin Tendulkar, who is 
considered an icon of Indian cricket, almost completely envelops the curves for other 
players. And the curve for Rahul Dravid, who is referred to as ‘the wall’ because of his 
perceived consistency, does indeed dominate the curves for other players till the 20 run 
point. In other words, the chances of Rahul Dravid getting a score less than 20 is lesser than 
the chances for any other player in the Indian team getting a score lesser than 20. Finally, 
the curves for the specialist batsmen very clearly dominate the curves for the specialist 
bowlers, as should be the case.  
 
DISCUSSION 
 
The method that has been developed only provides an alternative approach to represent the 
batting performance of cricket players. This alternative approach is visually and intuitively 
appealing. The attempt in this paper is not to arrive at a model to rank the utility of players. 
Nor is the goal to develop a model to assist in team selection. The utility of a player goes 
far beyond the runs scored by him. Factors like tactical skills, passive support to the partner 
batsmen, etc. cannot be gauged by looking at the runs scored. Even if we use runs scored as 
the sole measure of utility, first-order stochastic dominance rules alone cannot be used to 
rank players in terms of their utility. And if we go on to second-order stochastic dominance 
rules the utility function might not have a negative second derivative. In other words, there 
could be potentially match winning situations in which a batsman who is batting on a very 
high score (say, 108) has to score one more run in order for the team to win the match. In 
this situation the incremental one run (from 108 to 109) might be much more valuable than 
the incremental one run the batsman scored while he was on a lower score (say, 23) during 
the same innings. 
 
CONCLUSION 
 
Within the limits of this study, the paper seeks to highlight the tremendous scope that exists 
to improve and develop on the measures currently used to describe the performances of 
cricket players in general, and batsmen in particular. The measures used today do not 
adequately capture the richness of the underlying data. Similar approaches can be adopted 
to represent the performances of bowlers too. 
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ABSTRACT 
 
Animal biologists commonly use continuous time Markov chain models to describe 
patterns of animal behaviour. In this paper we consider the use of these models for 
describing AFL football. In particular we test the assumptions for continuous time 
Markov chain models (CTMCs), with time, distance and speed values associated with 
each transition. Using a simple event categorisation it is found that a semi-Markov 
chain model is appropriate for this data. This validates the use of Markov Chains for 
future studies in which the outcomes of AFL matches are simulated. 
 
KEY WORDS  
homogeneity in time, sequential dependency, semi-Markov process, football 
 
INTRODUCTION 
 
Animal biologists frequently perform ethological studies creating models in order to 
provide an accurate description of animal behaviour. The effects of various factors can 
then be studied in terms of the parameters of these models. The data often consists of 
continuous time records of behaviour which can be described using Markov chain 
models which take into account both the duration and the sequence of acts. Using these 
models it is possible to determine whether behaviour is homogeneous during an 
observation period, and, when behaviour is not homogeneous, changes in the model 
parameters can be used to determine when and how behaviour changes. Sports can be 
studied in a similar manner, using notational analysis to collect the data as described in 
Forbes and Clarke (2004) and Forbes (2006). If changes in behaviour can be linked to 
successful outcomes we will have a valuable tool for player development.  
 
Markov chains have been previously used to model sports events (Bellman, 1977, 
Bukiet and Harold et al. 1997, Forbes and Clarke 2004, Hirotsu 2002, Hirotsu and 
Wright 2003a and 2003b, Forbes 2006). Forbes and Clarke (2004) and Forbes (2006) 
created discrete Markov chains for AFL football, but this is probably the first time that 
an attempt has been made to model AFL football using CTMCs, because the data was 
not previously available. The model is similar to the above rat model; however, in 
addition to associating times with events we also have distances and speeds.  
 
METHODS 
 
CTMC Assumptions 
There are a number of assumptions associated with a continuous time Markov chain. 
The Markov property implies that transitions are independent of the time for previous 
transitions as well as the type of previous transitions. In addition it is assumed that the 
characteristics of the transitions have exponential distributions for each state. In animal 
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behaviour it is commonly found that the times for behaviours (bouts) do have an 
exponential distribution.  
 
In our analysis of AFL football we refer to the states of the Markov chain as events, 
such as a Kick. We have the times for each transition between events as well as the 
distance and speed associated with each transition, so we shall endeavour to include all 
three of these transition characteristics into our CTMC model. It is unlikely that these 
variables will have exponential distributions because these dimensions are confined by 
field size and shape and because there is a grouping of behaviours under each of the 
events (e.g. a Kick may be long, short, a ground kick, a clanger, a kick to advantage or 
an ineffective kick). Also it may be that we do not have a first-order Markov model in 
that the transition probabilities may not be independent of the previous sequence of 
events. This paper will investigate these issues in detail. 
 
Processes which do not have exponentially distributed transition times are called Semi-
Markov chains. A common distribution in the animal behaviour literature is a displaced 
exponential distribution which allows for a non-zero minimum value. The gamma 
distribution has also been used to describe the duration of animal behaviours, allowing 
for a mixture of exponential distributions. Log-normal distributions are also used and 
even normal distributions which have been censored at zero. All these possible 
distributions can be tested for our time, distance and speed variables. Of course, a 
multivariate distribution allowing for correlations between these three variables should 
also be considered. 
 
Haccou and Meelis (1992) recommend the following process for analysing behavioural 
data in animals.  

1) Search for homogeneous periods in order to reduce the error variances in the 
model. In particular it is possible to determine whether changes are abrupt or 
gradual.  

2) Analysis in the presence of gradual changes require special modelling but where 
there are abrupt changes the data should be divided into homogeneous subphases 
and analysed as indicated below for each subphase. 

3) Determine suitable distributions for the time, distance and speed variables and 
test the sequential dependence properties of the process. Also search for outliers. 

4) If the distributions are exponential and there is first-order sequential dependency 
a standard Markov chain analysis is possible.  

5) If the distributions are a mixture of exponential or gamma distributions and there 
is first-order sequential dependency the behavioural categories (Markov states) 
may have to be subdivided before a standard Markov chain analysis is possible.  

6)  If the distributions are not exponential or mixtures of exponential or gamma 
distributions, but there is first-order sequential dependency, a semi-Markov 
chain analysis is possible.  

7) If there is higher order sequential dependency ad hoc analysis methods are 
required. 

 
We will follow this process, in the analysis below, using a data set derived from four 
AFL matches during the 2004 season. 
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The Data 
The data was collected by Champion Data, the official provider of AFL statistics, for 
four matches during the 2004 season. These matches, the venues and the results are 
described in Table 1. In this paper we apply the ideas of Haccou and Meelis (1992) in 
this context using the event definitions shown in Table 2. These event definitions are 
over-simplistic in that they do not identify the teams involved in each transition. 
However, this simple event definition does allow us to test the assumptions of the 
CTMC. Forbes (2006) and Forbes and Clarke (2004) use a different set of event 
definitions in their work. Their definitions identify the teams involved in each 
transition; however, they do not differentiate between handballs and kicks, making the 
modelling of distances, times and speeds problematic for these events.    
 

Table 1: Description of Data: 4 AFL matches in the 2004 season 

Venue Home 
Team 

Away 
Team 

Winner Home Team 
Score 

Away Team 
Score 

Kardinia Park, 
Geelong 

Geelong St Kilda Geelong 101 94 

Subiaco Oval, 
Perth 

West 
Coast 

Western 
Bulldogs 

West Coast 106 57 

Melbourne 
Cricket Ground 

Melbourne Hawthorn Melbourne 107 63 

Sydney Cricket 
Ground 

Sydney Kangaroos Kangaroos 112 118 

 
Table 2: Description of event codes 

Event code Event Description 
BEHI Behind 
BUBO Ball up bounce 
CEBO Centre ball up 
HB Hand ball 
KI Kick in 
KK Kick 
THIN Throw in 

 
  
In the following analysis we start with an exploratory analysis in which we examine the 
assumption of an exponential distribution for time, distance and speed for each type of 
event. Thereafter we test for time inhomogeneity in our data and then test the nature of 
any time dependencies.  
 
RESULTS 
 
Exploratory Data Analysis 
A transition matrix was derived using the above event codes and the average times 
(sec), distances (m) and speeds (m/sec) were calculated for each event as shown in 
Table 3. Clearly kicks (KK) are the most common event followed by handballs (HB). 
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The mean times, distances and speeds vary markedly for the different types of events as 
expected. 
 

Table 3: Transition matrix and average event statistics 

 To Events  
From 
Events 

BEHI BUBO CEBO HB KI KK THIN Total Pct % 
(St.Dev.)

BEHI 0 0 0 0 85 0 0 85 2.93 
BUBO 1 14 0 35 0 41 3 94 3.24 
CEBO 0 16 0 61 0 49 0 126 4.34 
HB 0 16 0 385 0 511 29 941 32.44 
KI 0 0 0 20 0 64 0 84 2.90 
KK 85 38 112 381 0 738 90 1444 49.78 
THIN 0 11 0 61 0 48 7 127 4.38 
Total 86 95 112 943 85 1451 129 2901 100.00 
Mean 
Time 

18.41 11.85 9.16 4.48 6.73 9.51 11.87 8.22 (8.66) 

Mean 
Dist. 

36.22 9.33 9.45 13.37 7.37 37.51 18.40 25.80 (20.35) 

Mean 
Speed 

2.29 1.10 1.28 4.60 2.68 6.54 2.23 5.06 (4.87) 

 
Figure 1: Distributions for event values: Time, Distance and Speed 
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The histograms in Figure 1 show the distributions for time, distance and speed when all 
event types are combined. A right skew distribution is exhibited in all cases with 
skewness coefficients of 2.40 for time, 0.85 for distance and 2.51 for speed. In 
particular, the lumpiness of the distance distribution demonstrates the effect of the 
different events. Figure 2 shows a time plot for the events for each of the four matches. 
This plot shows obvious differences between the four matches. The Geelong match 
shows relatively few behinds except in the last quarter. The number of behinds peaked 
in the middle of the match for the Perth and in the first half of the Melbourne game. The 
number of goals is related to the number of centre bounces (CEBO), with three of the 
four games showing relatively few goals in the last few minutes of the match. Kicks 
were relatively rare for the Sydney game while Kick-Ins were relatively rare for the 
Geelong game. 
 
 



 85

Index

ev
en

t

700630560490420350280210140701

THIN

KK

KI

HB

CEBO

BUBO

BEHI

Time Series Plot of Events for Geelong

Index

ev
en

t

750675600525450375300225150751

THIN

KK

KI

HB

CEBO

BUBO

BEHI

Time Series Plot of Events for Perth

 

Index

ev
en

t

770693616539462385308231154771

THIN

KK

KI

HB

CEBO

BUBO

BEHI

Time Series Plot of Events Melbourne

Sequence Number

ev
en

t

670603536469402335268201134671

THIN

KK

KI

HB

CEBO

BUBO

BEHI

Time Series Plot of Events for Sydney

 
 

Figure 2: Event Sequences for each of the four venues 
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Figure 3: Distribution of event times, distances and speeds for the four venues. 
 
Figure 3 compares the time, distance and speed distributions for each match using a 3 
parameter LogLogistic distribution to describe each distribution. This is a versatile 
distribution shown below to describe the data well. There are obviously quite small 
differences between the matches, and the nonparametric Kruskal-Wallis tests in Table 4 
suggest that there is a significant difference only for speed, with a slower game played 
in Sydney than in Melbourne.  

 
Table 4: Mean Values and Standard Deviations for each venue 

 Venue 
Variable Geelong Melbourne Perth Sydney p-value 
Time 8.37 (0.32) 7.70 (0.28) 8.46 (0.33) 8.84 (0.37) 0.349 
Distance 26.06 (0.76) 27.29 (0.77) 25.49 (0.72) 24.59 (0.77) 0.190 
Speed 4.99 (0.19) 5.58 (0.18) 5.14 (0.17) 4.88 (4.76) 0.048 
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Figure 4 compares the distribution of event times, durations and speeds for each type of 
event, again using a 3-parameter LogLogistic distribution. There are clearly very 
significant differences between the various types of events (Kruskal Wallis: p<0.001). 
Moreover it is clear that an exponential distribution is not appropriate in most cases.  
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Figure 4: Distribution of event times, distances and speeds for the seven events. 

The goodness of fit for a set of four common survival distributions was studied using 
the Anderson-Darling statistic. This statistic measures the area between the fitted 
distribution function and the nonparametric empirical distribution function. As shown in 
Table 5, the 3-parameter LogNormal distribution (LN) and the 3-parameter Loglogistic 
(LL) distributions gave the most consistently good results. The 3-parameter Gamma (G) 
and the 3-parameter Weibull (W) distributions were less appropriate in most instances.  

Table 5: Ranking of Distributional Fit using the Andersen-Darling Statistic 

Event Time Distance Speed 
 LL G W LN LL G W LN LL G W LN
THIN 1 3 4 2 1 3 4 2 1 3 4 2 
KK 1 4 3 2 3 2 4 1 4 1 3 2 
KI 2 3 4 1 3 2 1 4 3 2 1 4 
HB 1 3 4 2 1 3 4 2 2 3 4 1 
CEBO 1 3 4 2 4 2 1 3 4 3 1 2 
BUBO 1 3 4 2 1 3 4 2 1 3 4 2 
BEHI 4 2 1 3 1 3 4 2 1 3 4 2 
Mean Rank 1.6 3.0 3.4 2.0 2.0 2.6 3.1 2.3 2.3 2.6 3.0 2.1 
 

Table 6: Spearman Rank Correlations for Transition Values (** p<0.001) 

 Correlations 
Event Time*Distance Time*Speed Distance*Speed 
BEHI 0.030 -0.604 (**) 0.717 (**) 
BUBO 0.072 -0.577 (**) 0.697 (**) 
CEBO 0.129 -0.435 (**) 0.798 (**) 
HB 0.213 (**) -0.659 (**) 0.533 (**) 
KI -0.248 (**) -0.265 (**) 0.998 (**) 
KK 0.438 (**) -0.629 (**) 0.356 (**) 
THIN 0.069 -0.633 (**) 0.415 (**) 
All 0.414 (**) -0.520 (**) 0.520 (**) 
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Table 6 shows the correlations between our time, distance and speed variables for each 
type of event. Spearman rank correlations were used on account of the lack of normality 
in most cases. The correlations are particularly interesting for Kick-Ins, with longer 
kicks apparently associated with shorter times, resulting in a much quicker speed. This 
is expected since a run with the ball is more likely before a short kick than before a long 
kick.  
 
Analysis for time inhomogeneity in the case of abrupt changes 
Visual methods can be used for detecting inhomogeneity in time. Our time plots give 
some indication of inhomogeneity in time and between matches in that Figure 2 
suggests that the frequency of events varies over time and between matches. However, 
Table 4 showed that the mean time and duration were similar for all the matches with a 
barely significant difference in the case of speed. This suggests that any inhomogeneity 
in our CTMCs will be confined to the transition probabilities. Hypothesis tests can be 
used to confirm whether this is true, using changes in mean termination rates or in the 
sequence of transitions to detect any time inhomogeneity.  
 
If the number of change points is known a Kruskal-Wallis test can be used to test 
whether the distribution of values for a specific event differs between the differing 
periods. This test makes no assumption about the distribution of values for a specific 
event. We compared the time, distance and speed distributions for each event between 
the quarters in any match and found no significant differences for any event when the 
Bonferroni correction was applied (α = 0.05/28). This confirms that there is no time 
inhomogeneity in the time, distance and speed distributions. 
 
Change points in the transition matrix can be tested using the following likelihood 
function for the Poisson distribution, with A and B denoting two consecutive states in a 
Markov process. In animal behaviour studies it is not usual to allow a transition from a 
state to itself, however, we shall allow this in AFL football so that we can track the 
passage of the ball from player to player. On the other hand there are some transitions 
that are not possible in AFL football (e.g. a Kick-In is the only event that can follow a 
Behind), so we will ignore all transitions with a frequency of zero in Table 3. 
 
For the sake of simplicity we again consider the end of each quarter as possible change 
points for each of the four matches. Our multinomial logistic regression analysis shows 
no significant match or quarter effect, suggesting that the transition matrix, like the 
transition variables, is homogeneous in time. As a result we shall use our complete data 
set for all four matches to test for sequential dependency.  
 
Tests of sequential dependency 
In a continuous time Markov chain (CTMC) a first-order dependency in the sequence of 
states is assumed. This means that the transition probability for states A and B in time ∆ 
is independent of the sequence of preceding states. This implies that the transition 
durations are independent for a given sequence of states. Dependencies may be short-
term, long-term, or periodic in nature. They may relate to the sequence of states or 
dependencies between transition values and preceding and/or following states, or they 
may relate to correlations with transition values in subsequent transitions. In the case of 
animal behaviour transitions from state A to itself cannot occur, but as mentioned above 
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this is not true in the case of AFL football. Instead there are several other transitions that 
are impossible as exhibited in table 3.  
 
Deviation from first-order dependency in a sequence of states is commonly tested with a 
chi-squared test. This test has reasonable power, however, it does not necessarily detect 
dependencies of higher than second order. Multinomial logistic regression was therefore 
used to model the occurrence of event Y based on the two previous events (X and A). It 
was found that only the most recent event had a significant influence (χ2(36) = 762.0, 
p<0.001) while the effect of the previous event was not significant (χ2(42) = 44.6, p = 
0.384).  
 
The next form of dependency occurs when the transition value distributions depend on 
the preceding state. This can be tested using a Kruskal-Wallis test, making no 
assumptions regarding the nature of the value distributions. Not unsurprisingly there 
was a strong relationship between the type of previous event and the values for time 
(χ2(6) = 20.7, p = 0.002), distance (χ2(6) = 186.7, p<0.001) and speed (χ2(6) = 210.6, 
p<0.001).  
 
Relations between subsequent transitions for the same and for different states produce a 
further form of dependency found in (semi-)Markov models, which can be measured 
using autocorrelation. Autocorrelations were initially calculated for all types of events 
simultaneously. For the time variable there was a very weak but significant positive 
autocorrelation of 0.05 for every second transition, suggesting that shorter events, such 
as handballs, would alternate with other types of event such as kicks. This theory is 
supported by the transition matrix in table 3. For the distance variable there was a weak 
but significant negative autocorrelation of 0.07 for successive events (lag one), again 
suggesting a tendency to alternate handballs and kicks, while for the speed variable 
there was a weak but significant negative autocorrelation of 0.05 for successive events 
and a stronger positive autocorrelation of 0.12 for every second event. Although all 
these correlations are weak they do tell us something interesting about the game. It is 
expected that these correlations will be automatically incorporated in the model through 
the transition matrix. 
 
When autocorrelations are considered for each type of event separately, only in the case 
of Kicks do we obtain any significant autocorrelations. The time taken for consecutive 
kicks has a weak but significant negative correlation of 0.15, suggesting that short 
duration kicks alternate with longer duration kicks. However, the speed for consecutive 
kicks has a weak but significant positive correlation of 0.10. Although weak, these 
correlations probably need to be incorporate in the modelling process. 
 
DISCUSSION AND CONCLUSION 
 
Our analysis of four 2004 AFL football matches has shown that inhomogeneity is 
unlikely to be a problem within an AFL football match. In our case there were similar 
processes for all four matches, perhaps on account of the similar scores for the four 
matches. However, for our definition of events there were marked differences in time, 
distance and speed requiring a separate analysis for each type of event. The distributions 
for the time, distance and speed variables varied for the different types of event, 
however, the 3-parameter LogLogistic and the 3-parameter LogNormal distributions 
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tended to give the best fit. There were strong correlations between these variables for 
most of the events. Finally, it was confirmed that a first-order sequential dependency 
existed for the events, and that for successive kicks there was a weak correlation for the 
speed and time variables.  
 
These results suggest that a semi-Markov model is appropriate since the distributions 
are not usually exponential or mixtures of exponential or gamma distributions, but there 
is first-order sequential dependency. This model could be used for simulation purposes. 
An initial centre bounce (CEBO) would result in Ball-up Bounce (BUBO) a handball 
(HB) or a kick (KK) with respective probabilities of 13%, 48% and 39%. The 
associated time, distance and speed could be generated using the appropriate CEBO 
three-parameter log-normal distributions, allowing appropriate correlations between the 
times, distances and speeds. Similarly, results for all ensuing game events could be 
simulated. Through changes to the transition matrix and/or other model parameters, the 
resulting model could be used in order to predict the effect of rules changes and changes 
in play strategy. 
  
However, although the total number of goals and behinds would be known, the final 
score and the winner would not be known. In order to develop a more useful model all 
that is needed is a split of the events to identify the teams involved in each transition. 
The current work suggests that a semi-Markov model would be appropriate for this 
extended model, allowing a simulation similar to that described above, from which 
scores and the winning team could be determined for each simulated game. 
 
In the above analysis we have associated distances, speeds and times with each 
transition in time. The addition of directions for each transition would make it possible 
for a spatial simulation to be performed. In this case it would make sense to define the 
events according to spatial zone (within the field) as well as activity. An alternative 
approach would have been to use the quarters of the field as the events, again using 
time, distance, speed and direction to describe each transition. This approach would also 
not allow the simulation of match outcomes but it would help coaches and players to 
better understand the spatial patterns of play. A further extension to this work could 
allow continuous changes in the model parameters over time with the possible inclusion 
of covariates in the models for the transition probabilities. 
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ABSTRACT 
This article reviews developments in the use of Artificial Intelligence (AI) in sports 
biomechanics over the last decade. It outlines possible uses of Expert Systems as 
diagnostic tools for evaluating faults in sports movements (‘techniques’) and presents 
some example knowledge rules for such an expert system. It then compares the analysis 
of sports techniques, in which Expert Systems have found little place to date, with gait 
analysis, in which they are routinely used. Consideration is then given to the use of 
Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-
organizing maps, which have been the most widely used in technique analysis, and 
multi-layer networks, which have been far more widely used in biomechanics in 
general. Examples of the use of ANNs in sports biomechanics are presented for javelin 
and discus throwing, shot putting and football kicking. I also present an example of the 
use of Evolutionary Computation in movement optimization in the soccer throw in, 
which predicted an optimal technique close to that in the coaching literature. After 
briefly overviewing the use of AI in both sports science and biomechanics in general, 
the article concludes with some speculations about future uses of AI in sports 
biomechanics. 

 

KEY WORDS 
artificial intelligence, artificial neural networks, evolutionary computation, expert 
systems, Kohonen self-organizing maps, sports biomechanics. 

 

INTRODUCTION – WHERE WE WERE IN 1995 
Lapham and Bartlett (1995) published a review of the use of AI in sports biomechanics. 
In this, we reported no evidence of the use of AI in sports biomechanics, although 
Expert Systems and ANNs were being used in gait analysis. We did, however, predict a 
bright future for the use, in particular, of Expert Systems in sports biomechanics. So 
what has happened in the decade since? 

 

EXPERT SYSTEMS 

Expert Systems are, effectively, a database combined with a knowledge base, 
‘reasoning’ and a user interface. The knowledge base contains specific knowledge, or 
facts, for the ‘domain’. The knowledge rules can also include logic operations, managed 
by probability theory, as in this example from a hypothetical Expert System for the 
analysis of fast bowling in cricket: IF ‘shoulder-axis counter-rotation’ is high; THEN 
‘technique’ is mixed (p=0.8). 
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This example was chosen to illustrate that much information is vague – 'high' in the 
above example has varied from 10 to 20 to 30 to 40º in the scientific literature on fast 
bowling (see, for example, Bartlett, 2003), showing that much information is ‘fuzzy’. 
The difference between ‘crisp’ and ‘fuzzy’ knowledge is shown in Figure 1 for fast 
bowling. Note that in the fuzzy representation, side-on and mixed techniques overlap as 
do mixed and front-on. These fuzzy overlaps are supported by the division of the mixed 
technique into side-on-mixed and front-on-mixed.  

 
Figure 1: Classification of cricket fast bowling techniques 
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So, as Expert Systems are good diagnostic tools and system ‘shells’ are readily 
available, it is surprising that they are rare in sports science. The closest thing to Expert 
Systems in sports biomechanics at present is found within qualitative video analysis 
packages, such as SiliconCOACH’s ‘wizards’. Although not, strictly speaking, Expert 
Systems, these wizards do provide a formula engine that could be used by wizard 
developers to arrive at decisions by taking into account one or more responses to other 
data entered into the wizard; whether this provision is used is up to the wizard 
developer. This reality conflicts with the positive view of the utility of Expert Systems 
by Lapham and Bartlett (1995). 

The use of Expert Systems in gait analysis (e.g. Bekey et al., 1992) suggests an 
extension to the analysis of sports techniques; both are branches of biomechanics. In 
gait analysis, however, there is a strong developmental motivation – patient health – 
which helps to attract funding. Clinicians are expensive, making investment in complex 
software development worthwhile financially. Gait analysis is a confined expert domain 
- gait and its variants with many experts. It is laboratory-based, so automatic marker 
tracking systems are commonplace and data are abundant. Analysis of sports techniques 
is more complex than gait analysis and there is a weak developmental motivation: 
research into sport performance is not well funded. Coaches and sport scientists are not 
expensive; technique analysis is often field-based, preventing the automatic tracking of 
markers; and it is a broad expert domain, involving many sports. There is little data for 
technique analysis Expert Systems and there are fewer experts than for gait analysis.  

 

ARTIFICIAL NEURAL NETWORKS 
Artificial Neural Networks (ANNs) allow computers to learn from experience and by 
analogy. They are computer programs that try to create a mathematical model of 
neurons in the brain. An ANN is an interconnection of simple adaptable processing 
elements or nodes. They are non-linear programs that represent non-linear systems, such 
as the human movement system, and, from a notational analysis perspective, games. 
Artificial Neural Networks have nodes, which are simplified models of brain neurons, 
inputs, outputs and weights. The network stores experiential knowledge as a pattern of 
connected nodes and synaptic weights between them. Multi-layer ANNs have several 
‘hidden’ layers and normally learn using the ‘back-propagation learning law’. 

Kohonen self-organizing maps have one hidden layer and using ‘competitive learning’ – 
only one neuron is selected for weight adjustment each iteration, based on the minimum 
‘distance’ between the sums of its inputs and its weight. These networks require lots of 
‘training’ data and, once trained, can only be used for testing, not further learning.  

 

ARTIFICIAL NEURAL NETWORKS IN SPORTS BIOMECHANICS 

Given their usefulness for classification, clustering and prediction, and that they are 
easily available, how widespread is the use of ANN in sports biomechanics? Well, 
unlike Expert Systems, they have been used, as well as in notational analysis and 
elsewhere in sport and exercise science (see, for example, Perl, 2001, 2005). Perl (2005) 
and Perl and Weber (2004) highlighted the importance of pattern recognition using 
ANNs; the patterns can be tactical ones from a game, performance patterns in training, 
or – the focus of the rest of this paper – movement patterns of sports performers. In this 
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last application, the ANN is normally used to transform a high-dimensional vector space 
of biomechanical time series into a low-dimensional output map. 

Kohonen self-organizing maps were used to analyze discus throws by Bauer and 
Schöllhorn (1997). They used 53 throws (45 of a decathlete, 8 of a specialist) recorded 
using semi-automated marker tracking over a one-year training period. Each throw had 
34 kinematic time series, for 51 normalised times; these complex, multi-dimensional 
time series were mapped on to a simple 11x11 neuron output space (Figure 2). Each 
sequence was then expressed as the mean deviation (d in Figure 2) of the output map – 
the continuous line - from that of one of the throws by the specialist thrower, shown by 
the dashed line. 

 
Figure 2: Use of Kohonen self-organizing maps in discus technique analysis (adapted 

from Bauer and Schöllhorn, 1997). 

 
Figure 3: Grouping of throws within sessions, between vertical lines (adapted from 

Bauer and Schöllhorn, 1997). 
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The deviations for the eight specialist throws are shown on the right of Figure 3, the 
decathlete’s 45 throws on the left. The ‘distances’ are less for the specialist thrower as 
the comparator was one of his throws. Note the clustering of groups of throws, between 
the vertical lines, within training or competition sessions. There was more variability 
between than within sessions; for five groups of five trials, the authors computed inter- 
and intra-cluster variances, giving an inter-to-intra variance ratio of 3.3±0.6. This shows 
that even elite throwers cannot reproduce invariant movement patterns between 
sessions. The supposed existence of such invariant patterns – which arises from the 
motor programs of cognitive motor control - has often been used, explicitly or 
implicitly, to justify the use of a ‘representative trial’ in sports biomechanics.  

Bauer and Schöllhorn (1997) claimed that the map output reveals information about the 
whole movement that is not discernable from the detailed kinematics. It is, undoubtedly, 
simpler and different. What we have here is, in effect, the detection and recognition of a 
pattern that is obscured by the enormous fine detail of the multiple time series. 

Schöllhorn and Bauer (1998) reported a similar approach to analyse 49 javelin throws 
from eight elite males, nine elite females and ten heptathletes. This time, manual 
digitising of estimated joint centre locations was used. Clustering was found for the 
male throwers – as a group - and for the two females for whom multiple trials were 
recorded. Variations in the cluster for international male athletes were held to contradict 
any existence of an ‘optimal movement pattern’. This view was supported by an 
analysis at the 1995 World Athletics championships, reported by Morriss et al. (2000), 
with a focus on arm contributions to release speed. The large shoulder angular velocity 
for the silver medalist suggested reliance on shoulder extension and horizontal flexion 
to accelerate the javelin, suiting his linear throwing technique. In contrast, the gold 
medalist used medial rotation of the shoulder to accelerate the javelin; this movement, 
plus an elbow extension angular velocity at least 18% faster than for any other finalist, 
was the reason he was able to achieve the greatest release speed. However, some 
scepticism about the results of both these studies is warranted in the light of recent 
research by Bartlett et al. (2006). We found, in a two-dimensional laboratory study of 
treadmill running, that it is impossible to distinguish movement variability between 
trials from variability within and between operators who manually digitized joint 
centres without the use of markers. This would be far worse for a field-based three-
dimensional study. 

Lees et al. (2003) reported the results of a study that used Kohonen maps to analyse 
instep kicks by two soccer players for distance or accuracy. Joint angles were obtained 
from the three-dimensional coordinates of automatically-tracked markers. These were 
then mapped on to a 12x8 output matrix and showed differences between tasks and 
players; these output patterns were repeatable for the same task for one player. The 
authors claimed that the output map ‘nodes’ were related to characteristics of the 
movement technique, although what these characteristics are remains to be determined. 
Lees and Barton (2005) used a similar approach for several kicks by six soccer players, 
three right- and three left-footed. In this study, 14 joint angles were obtained from the 
three-dimensional coordinates of automatically-tracked markers for 80 equispaced time 
instants from take-off for the last stride to the end of the follow through of the kick. The 
output maps distinguished well between the right- and left-footed groups, which the 
authors stated was a non-trivial problem using just the joint kinematics. Again, intra-
player differences were small.  
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Adopting a different approach from that of the previous studies, Yan and Wu (2000) 
used a multi-layer ANN with one hidden layer to analyse the shot putts of 155 throws 
by 31 national-standard Chinese females. The network was ‘trained’ using values of 20 
global and 33 local technique parameters from manually-digitized coordinates, to 
predict release angle and speed from 134 throws of all throwers; it was then tested with 
data from 21 throws of 11 throwers. The errors between the network outputs and the 
measured release parameters were then compared to those obtained using regression 
analysis. The ANN errors were typically 25-35% less than those from regression 
analysis, e.g. 0.20 compared to 0.31 m·s-1 for release speed and 0.91 compared to 1.26º 
for release angle. Whether such an improvement merits the use of a more complicated 
approach is a matter of judgment, although it is worth noting that regression models 
cannot learn. What might need emphasizing is that the errors from both methods are 
smaller than the uncertainties in release parameter values that occur using manual 
digitizing, as in this study, for which errors in release angle of ±1.5º and in release speed 
of ±0.5 m·s-1 are common. This network was then used by Yan and Li (2000) to analyse 
the shot putting techniques. The authors claimed that this showed weaknesses of 
technique compared with those of the elite putters, although this was not well 
substantiated by the paper, possibly because the Chinese authors were writing in 
English. 

Artificial Neural Networks have been more widely used than Expert Systems in sports 
biomechanics. In technique analysis, Kohonen self-organising maps have been claimed 
to reveal the ‘forest’ rather than the ‘trees’. Simplification is undoubtedly an important 
feature of ANN, although the ways in which we can best use the outputs of these 
mappings remains to be determined. If the mapping rules within these opaque and very 
non-linear networks never become transparent, as some ANN experts predict, then 
explicit mappings between specific features of the kinematic time series and the output 
maps may never emerge. Even under these circumstances, however, this novel approach 
to the analysis of sports movements might still prove to be a powerful tool in the 
analysis of human movement in sport, such as by possibly providing a non-linear 
measure of movement variability. Artificial Neural Networks represent an important 
link to non-linear dynamical systems theory; for example, Kelso (1995) reported the use 
of ANNs in studies of perception and noted that the networks model hysteresis, stimulus 
bias, and adaptation effects, all key tenets of non-linear dynamical systems theory. 

 

EVOLUTIONARY COMPUTATION 
Evolutionary Computation includes genetic algorithms, genetic programs and 
evolutionary strategies, and uses artificial – numerical – ‘chromosomes’ to simulate 
evolution. Bächle (2003) used an evolutionary strategy to optimize the joint torques at 
hip, shoulder and elbow to maximize distance thrown in a soccer throw in. This study 
predicted an optimal throwing technique close to that described in the coaching 
literature, with the initially passive torque of the hip accelerating the trunk forwards 
while the negative elbow torque kept the forearm back. Then, 30 ms before release, the 
trunk was decelerated by a negative hip torque, while a positive elbow torque 
accelerated the forearm forwards. Seifriz and Mester (2002) used genetic algorithms to 
calculate the optimum trajectory of a skier, but this was only published as an abstract. 
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CONCLUSION: A ROSY FUTURE FOR AI IN SPORTS BIOMECHANICS? 
Automatic marker-tracking systems allow more, and more accurate, human movement 
data to be collected. This could lead to the use of fuzzy Expert Systems for diagnosis of 
faults in sports techniques, a substantial development of the rudimentary Expert 
Systems currently embedded in some video analysis packages. Kohonen mapping will 
become commonplace in sports biomechanics, particularly if the technique elements 
captured by the mapping can be identified. Dynamically controlled networks will 
become more widely used in studying learning of movement patterns. Multi-layer 
ANNs will have an important role in technique analysis, a view supported by their use 
elsewhere in biomechanics, including the closely related domain of gait analysis. Other 
AI applications – particularly Evolutionary Computation and hybrid systems - will 
feature in future developments in the optimization of sports techniques and skill 
learning. Finally, the links with dynamical systems theory will become even more 
apparent, leading, for example, to an enhanced understanding of movement 
coordination and the role of movement variability. But Lapham and Bartlett were 
equally optimistic in 1995 and, so far, their expectations have not been fully realised. 
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THE IMPACT OF INTRODUCING REAL-TIME COMPUTER VISION 
TECHNOLOGY INTO AN ELITE SPORT TRAINING ENVIRONMENT 
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ABSTRACT 
This paper describes the introduction of a computer vision system into a sports training 
environment. It is generally assumed that because a computer application is designed 
specifically to enhance sporting performance, the coaches and athletes will find it useful 
and will incorporate it into their training regime. In this paper, the extent and way in 
which a real-time computer vision system was used by coaches and athletes, who had 
no experience using computer systems before, is examined. The environment chosen 
was a high level gymnastics club that introduced a computer vision replay system to 
assist their high performance trampolinists and rhythmic gymnasts. This system allowed 
athletes to view their training continuously on the screen in real time or seconds after 
their “turn” enabling coaches and athletes to review their performances throughout each 
training session. Six weeks of detailed field observations and interviews with the 
coaches were undertaken with a view to describing how the system was integrated into 
their training sessions. The results show that the system was adopted by the two groups 
in quite different ways over the six week period, which were different again to the way 
in which the designer envisioned it being used.  
 
KEYWORDS 
sport technology, video feedback, gymnastics, trampolining, actor network theory. 
 
INTRODUCTION 
 
Sociologists of sport are increasing concerned with the importance of science and 
technology in the production of sport, particularly at the elite level. Ethical debates 
discuss whether doping, genetic manipulation and technology have now reached a level 
where sport is about the best athlete’s technology as opposed to the best athlete 
(McCrory 2003, MacCarthur and North 2005, Miah 2004, Patel and Graydanus 2002, 
Randerson 2004, Tenner 1995: 30). Equipment and clothing design are shown to be 
highly influential in increasing sporting performance (Robinson et al 2002, Gunston 
2005, Randerson 2004, Jenkins 2002: 65) as are high tech devices such as heart 
monitors, pedometers and complex software (Earnest 2005, Schnirring 2004). 
 
Sociologists of sport discuss the large amount of time spent training by elite athletes 
who use this equipment. Researchers have examined the effects of training on such 
areas as adult social relationships (Drummond 2002, Hemery 1986), youth peer 
relationships (Patrick 1999, Donnelly 1993, Duncan 1997, Coakley 1993, Weiss 2000) 
and post-competition life (Schmitt and Leonard 1986). Yet, as Butryn points out, 
“…there has been little attempt on the part of sport sociologists to investigate athletes’ 
interactions with perceptions of technology.” (Butryn 2003: 19). Technology appears to 
be unquestioningly accepted as an integral part of the production of elite sport with little 
explanation on how it is used. 
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As Butryn notes, the question of how technologies and equipment are integrated into 
and used in the competitive training environment is rarely discussed. The scientists and 
designers of sporting technology often work in laboratories, quite separate from the 
gymnasiums, courts or fields where sport training generally occurs. How then, do the 
new ideas developed by scientists, reach the sport training ground? As Sands points out, 
it can be difficult for coaches to establish whether a new piece of technology will be 
beneficial to their athletes (Sands 1999). It may or may not be something that will assist 
with that particular training programme. Moreover, even once introduced, the coaches 
must then be taught how to use the new technology to its maximum effectiveness (Lim 
2005). 
 
In this study, a real time computer vision system providing instant video feedback was 
introduced to a sports training environment. The effectiveness of video feedback in 
sports coaching is well documented and therefore not specifically examined here 
(Darden 1999, Holcomb 2002, Jambor 1995, Seifried 2005). Instead, the focus is on 
how was this technology integrated into a sports training environment and how, why 
and whether it became a regular part of the training programme. 
 
METHOD 
 
The environment chosen for this research was a gymnastics club which had high 
performance competitive programmes for several types of gymnastics and was about to 
introduce a computerised replay system into the gymnasium to assist with training. The 
new system was specifically being introduced for the trampolinists and the rhythmic 
gymnasts, who were the highest level of gymnasts in the club and, club officials 
reasoned, would benefit most effectively from the new technology (Interview with the 
software designer, July 2005). 
 
The methodology chosen for this project was actor network theory, which involved 
extended fieldwork, observations and interviews. Following authors such as Latour and 
Woolgar, the aim was to "learn from the actors". However, for these authors, the word 
“actor” refers to both humans and non-humans and both are understood together to 
create their own networks, their own language and metalanguage (Miller 1997: 360). 
They argue that fieldwork, making close observations, makes it possible to illuminate 
how things are assembled or disassembled through following the actors through the 
labyrinths or networks they construct (Austrin and Farnsworth 2005).  
 
Due to the emphasis on the significance of both human and non-human entities, these 
methods have become very effective in technology studies. Yet despite the increased 
importance of "non-humans" such as equipment and sport science technologies, the 
methodology has never been applied to sport. This research uses these methods to 
examine the impact and integration of a new piece of video related software into an elite 
training environment. Field observations of training in the club occurred during several 
weeks prior to the introduction of the system and for six weeks afterwards. Interviews 
were undertaken with the trampolining and rhythmic coaches and the software designer, 
as well as some informal discussions with the athletes. The observations between the 
two areas were compared. 
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RESULTS 
 
Before we can examine how the introduction of technology altered training, it is 
necessary to first understand how training worked in the different disciplines prior to the 
system being integrated. 
 
Trampolining 
 

 
Figure 1: The trampolining area of the gym. 

 
There are between six to eight females in the group at each session, aged between 14 
and 29. It is crucial to note that at all times, only four trampolinists are actually on the 
trampolines, as it is only possible to have one person on each of the four trampolines at 
a time. This means that at all times, there are two to four trampolinists doing something 
other than bouncing on the trampoline. When not on the trampolines, the trampolinists 
tended to go to the bathroom, talk to each other, write in their books or, “throw in” one 
of the blue or green safety mats.1 At all times, the coach stood on the floor area, a little 
bit back from the trampolines and watched the two trampolines closest to the wall.  
 
In a typical training session, the trampolinists performed stretching and strengthening 
exercises2 on the floor area beside the trampolines3 for about 20 minutes. They then 
began bouncing on the trampolines, first doing simple moves like jumping up and down 
keeping their bodies straight, then moving to more complex somersaults with multiple 
twists. Each turn on the trampoline takes about five minutes. They spent some turns on 
one or two skills, and some turns doing their whole ten skill routine.  

                                                 
1 The mat is “thrown in” during the difficult move so that the trampolinist performing the move lands on 
the mat, not on the trampoline, cushioning their bounce and ensuring they land more safely.  
2 These consist of stretches for the hamstrings, shoulders, splits, quadriceps, back and stomach. 
Strengthening exercises are generally sit-up type exercises for the abdominal muscles, and push up type 
exercises to build arm muscles. 
3 The “floor area” is the official artistic gymnastics floor which is shared with artistic gymnasts at this 
time. 
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Between each five minute turn, they got off the trampoline, did something else, then 
returned for another turn usually about ten minutes later. In interviews, it was revealed 
that trampolinists generally need to use the bathroom every ten minutes because 
bouncing puts pressure on the bladder, so it is quite normal for a trampolinist to leave 
the trampolining area and use the bathroom after almost every turn on the trampoline 
(Interview trampoline coach, May 2005).  
 
Rhythmic Gymnastics 
 

 
Figure 2: The rhythmic gymnastics floor 

 
Similar to trampolining, there were about six to eight females in the high performance 
group. They are a little younger than the trampolinists, aged between 11 and 16. In a 
typical training session, the gymnasts arrived, placed their bags and apparatus in the 
storeroom and then spent one hour on warm up exercises in the ballet room, followed 
by stretching4.  
 
After stretching, they moved to the rhythmic floor and spent half an hour to an hour on 
specific skills. They usually lined up on the edge of the rhythmic floor and performed 
rows of specific balances, turns and leaps or walkovers. The coach stood watching and 
continuously issued verbal corrections. Alternatively they used their apparatus (hoop, 
ball, rope or ribbon) to practice throw skills on the mat. Then they spent the remaining 
two hours or so practicing routines.  
 
In contrast to the trampolining program, in the rhythmic training there was often more 
than one person working with the girls. There were always one or two coaches present, 
and often a third person, a judge, who although she did not direct the girls, continually 
pointed out corrections and clarified judging rules with the coaches5. Routines were 

                                                 
4 The rhythmic gymnasts spend a great deal of time practicing the splits and bridges. They practice splits 
with one foot placed up on a chair and hold for several minutes, plus many types of exercises to increase 
their back flexibility. 
5 In an interview, it was explained that rhythmic coaches must submit a detailed judging sheet describing 
exactly what their gymnasts will be performing in their routines prior to competing. These means the 
coach needs a substantial amount of help from judges to plan routines and complete these sheets. 
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done with one girl performing a routine to music on the floor with her apparatus, while 
the others practiced parts of their routines around her on the floor, moving out of her 
way if she comes near them. They each took turns (for about 1.5 minutes) to do one 
routine, and then returned to practicing individual skills and skill sequences. Unlike the 
trampoline, the rhythmic floor is able to have many people on it at once and all the girls 
are constantly on the floor and all practicing rhythmic gymnastics at all times.  
 
The introduction of the Computer Replay System 
In May 2005, two computer vision replay systems were placed in the gymnasium to 
provide constant real time video feedback to the athletes and their coaches on a 
continual basis.  The systems could be set to show a continuous replay of the athlete 
from several seconds to several minutes ago6. Coaches at all levels of sport regularly 
use videotaped performances and practices to assess, demonstrate to, and motivate their 
players (Seifried 2005:36). In this case, the designer, as a club official, believed that 
creating a permanently set up video system would assist athletes in improving 
performance. He placed one monitoring the trampolining area and another monitoring 
the rhythmic gymnastics floor. 
 
Trampolining with the system 
In trampolining, during the first week, the new system was of great interest to the 
trampolinists. The trampolinists used it by simply watching the screen as soon as their 
turn on the trampoline was finished, and only then going to the bathroom or throwing 
the mat in as normal. They rushed with great interest to the screen to see themselves, 
however what they saw wasn’t always what they expected to see. One of the older 
trampolinists remarked after her turn “I can’t wait to see that move on the computer, it 
was perfect!” However, upon watching herself on the computer, discovered that she was 
very far from perfect, expressed great disappointment with herself and surprise that it 
“felt” perfect to her in the air yet was clearly not so to the eye (Field notes May 2005). 
 
During the next six weeks, the computer system became a “normal” part of training for 
the trampolinists, though not all athletes used it identically. The older trampolinists, 
who were all also trained as coaches, used it to coach themselves. They would get off 
the trampoline after their turn and watch themselves without first speaking to the coach 
for feedback, often selecting slow-motion replay or pausing at certain frames. They 
might also discuss what they are seeing with another trampolinist or the coach, 
discussing ideas on how to fix what they could see was wrong on the monitor. One of 
the younger trampolinists, not at all trained in coaching, would not only watch herself. 
She would watch one of the better trampolinists and compare how they looked with 
herself. She would move the footage forward and backward frame-by-frame, flicking 
between the other trampolinist and herself (Field notes June 2005).  
 
The trampolining coach described that since the new system went in: 
 

“The girls are taking more interest in self evaluation. They’re more likely now to 
look at their skills from a judging perspective and compare them to other people’s 

                                                 
6 A webcam was placed on the wall next to the trampolines and connected to the computer. This system is 
less time consuming than setting up a hand held video camera as it needs no one to work it, but simply 
records and provides feedback on a continual basis. 
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skills… They can make adjustments based on what they know to be correct.” 
(Interview with trampolining coach, May 2005). 

 
The coach, although at first showing some resistance to the new system, became 
gradually more used to it as the weeks went by and began referring the trampolinists to 
it more often.  
 
The trampolining coach also noted that the older trampolinists are the ones who use the 
system the most because they have:  
 

“…the knowledge and experience to know how to use it better… the fact that all 
the trampolinists are at least level one coaches does give them an ability to self 
coach.” (Interview with trampolining coach, May 2005). 
 

The coach inadvertently points to the shifting of assemblages, coming about due to the 
older athletes’ knowledge of coaching. The assemblages of trampolinist and coach were 
previously reliant on each other to produce results. With the computer system, the 
assemblage of trampolinist/computer system/coaching knowledge works to create high 
performance trampolining as effectively as the previous assemblage of 
trampolinist/coach.  
 
This is confirmed by the coach’s initial comment “if you girls don’t get back to work, 
I’m going to turn that machine off forever!” Although the designer of the technology 
intended it to “augment” the coaching process, the coach instead immediately 
recognised that this new system had the ability to substitute for himself and was 
therefore threatened, although in time, he realised its value. 
 
After six weeks, trampolining training had stabilised with the new system accepted as 
an important actor in the production of trampolining. The trampolinists believed the 
system to be allied to them in showing them faults in their body shapes which the coach 
may or may not point out. The coach believed the system to be his ally as it is able to 
prove to the trampolinists that what he is saying about their performance was true. Thus, 
although initially the new actor disrupted the trampolining network through being 
perceived as a competitor to the coach, the network soon reassembled and stabilised. 
 
Rhythmic Gymnastics with the system 
The rhythmic gymnasts, unlike the trampolinists, had no “off time” away from the 
rhythmic floor in which to watch themselves on the computer. Therefore, the coaches 
incorporated the computer system in the gym in a different way. 
 
Sessions worked with one gymnast doing a routine, which one coach watched. At the 
end of the routine, the coach would take the gymnast over to the corner of the mat 
where the computer was to watch the routine on the screen together. In the meantime, 
the other coach or the judge would watch the next girl’s routine. So at all times, there 
would be one coach and one gymnast at the computer, while another gymnast did a 
routine and was watched by the other coach. In between their turns with the coaches, the 
gymnasts were almost always on the rhythmic floor practising parts of their routines, 
often watched by the judge. However, as the weeks since the introduction of the new 
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system went by, the system was used less and less. One of the coaches also took a 
holiday, and while she was away the system was not turned on. After six week, the 
system was rarely used. 
 
DISCUSSION 
 
There are several possible explanations for why the computer system was so easily 
adapted into the trampolining environment as opposed to the rhythmic gymnastics 
environment.  
 
The most obvious explanation is that in trampolining, there is always “downtime” 
which allowed for the computer system to be used by the athletes. The shape of the 
trampoline means that only one trampolinist can work on each trampoline at a time, and 
with more than four people in the training group, this necessitates that there are always 
trampolinists not on the trampoline. In this particular case, the trampolinists had no 
specific tasks to fulfil when not on the trampoline and therefore, had time to use the 
computer system. Training did not need to be altered in order for the system to be 
effective. By contrast, the rhythmic gymnasts lacked the time to look at the computer 
screen. They were required to be training more or less constantly, allowing no time 
during the training session for them to watch the screen. 
 
Another possible explanation is the age and ability of the athletes. The trampolinists 
were generally older than the rhythmic gymnasts. As a result, several of these 
trampolinists also had experience in coaching. Therefore, it was easier for these athletes 
to use the computer system to coach themselves. The rhythmic gymnasts, being younger 
and without any coaching experience, may not have known what exactly to look for 
when watching themselves on the screen, therefore the coach felt the need to watch the 
routine on the computer with them. Other studies suggest however, that it is the ability 
of the performers that impacts the effectiveness rather than the age (Darden 1999), and 
in this study, it appears to be related to both coaching ability and age. 
 
The attitude of the coaches is also significant, which is consistent with other findings 
(Darden 1999). In trampolining, although the coach was originally not enthusiastic 
about the system, he was prepared to try it and by the end of six weeks had concluded 
that it was a vital coaching aid. By contrast, in an interview with the rhythmic coach, it 
was revealed that she actually had quite strong negative opinions about the use of video 
feedback: 
 

“I found in the past that gymnasts, especially when they first begin watching 
themselves on video, are very harsh and only see the worst parts. And it can be, 
for some girls, particularly those perfectionists, can actually be a negative thing, 
because they don’t like what they’re seeing.” (Interview with rhythmic gymnastics 
coach) 

 
Her belief that video feedback tends to be negative would undoubtedly have influenced 
the amount of use the system was given. Darden (1999) discusses how the negativity 
experienced when first using video must be overcome in order for video feedback to be 
effective. It is possible that if this coach were to use the system over a longer period, she 
may see her athletes overcome this feeling and find the system more useful. 
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CONCLUSIONS  
 
The results of this study suggest that when creating or purchasing technology to 
enhance sporting performance, it is not enough to consider only whether the technology 
will be effective technically. The way that training sessions operate, the views of the 
coaches and the age and abilities of the athletes appear to be highly relevant in 
predicting whether a new piece of technology will be useful. It is likely that a closer 
relationship between the designers of technology, coaches and athletes would be 
beneficial to creating technology that can be incorporated smoothly into the sports 
training environment.  
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ABSTRACT 
Synchronising video of a movement skill with that of an expert currently requires 
manual alignment and scaling of two video sequences. This is problematic because 
different athletes perform skills at different speeds and even body position phase 
relationships vary during execution. This paper introduces a method for temporally and 
spatially synchronising pairs of image sequences of human body movement in real-time 
while normalising for athlete size. Real-time image sequences summersaults are used in 
this case study. Based on biomechanical features calculated from movement sequences, 
a detailed implementation is described together with measurement of the difference 
between two moving objects, performance, and limitations of the proposed algorithms. 
Skill pairs are either temporally synchronised using motion segmentation or spatially 
synchronised based on pose alignment to enable feedback of both pose phase errors and 
pose shape errors respectively. The results indicate that the real-time temporal and 
spatial synchronising algorithms introduced here automatically synchronise movement 
in novice and expert video sequence pairs for useful pose shape and pose phase 
feedback to athletes. 

 

KEY WORDS 
computer vision, motion analysis, sport coaching, human body, temporal 
synchronisation 

 

INTRODUCTION 
Given image sequences of a novice and expert performing the same skill, one of the 
most basic and useful tasks would be spatially and temporally matching the videos by 
synchronising their motion. However, although this operation is cognitively easy for 
humans, implementing it on a computer system is a challenging problem.  In general 
sequences of motion, synchronising two similar moving objects, which are varying in 
their speed and the direction could be a difficult task, if it has to be done manually by a 
simple video editing tool.  Having a robust method to automatically track objects and 
synchronise videos based on some invariant features is the goal of this research. 

In computer vision literature, modelling the human body and its motion is an area of 
great interest to many researchers, as a survey by Moeslund and Granum (2001) shows. 
The research can be roughly grouped into two parts: tracking method with model 
reconstruction, and movement recognition. Already impressive results have been 
reported in the recognition area alone. Yamato et al. (1992) reported successful 
recognition of six different tennis strokes among three subjects. Starner and Pentland 
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(1995) also worked on hand gesture system, American Sign Language, with a 99% 
successful recognition rate.  These are based on the use of Hidden Markov Models 
(HMM). Recently, Green and Guan (2004a, 2004b), proposed a more unified and 
general framework for recognising human movement patterns which are also based on 
HMM. 

For tracking the human body, a popular method is CONDENSATION (CONditional 
DENSity propagATION) algorithm (Isard and Blake, 1998), or also known as particle 
filter (Deutscher et al., 2000). Because of multiple predictions for each variable being 
tracked, this algorithm is more robust to heavy background clutter than the traditional 
Kalman filter (Kalman, 1960). 

In this paper, we demonstrate the experiment with “salto” as our case study example, 
which is a somersault with a full 360˚ rotation about the transverse axis of the body, 
performed on a trampoline. With video to be synchronised consisting of relatively 
simple and elegant movement sequences, the salto is an ideal choice for the study of 
human motion in a controlled indoor environment. This research proposes a 
computationally efficient temporal synchronising algorithm using the centre of mass 
and principal axis calculated in real-time from a sequence of images. 

 

BACKGROUND 
It is assumed that only one main moving object is captured by a fixed camera 
environment.  This assumption is necessary when applying a Double Difference 
Algorithm (Aggarwal and Cai, 1999) to obtain an object motion mask. 

The entire region of the moving object (i.e., the gymnast performing a salto) stays 
within the image boundary, so that the centre of mass can be always computed 
correctly. 

Overview of the Procedure 
An outline of the general procedure of this experiment is: 

1. Apply double difference algorithm (DDA) to isolate the moving object. 

2. Apply morphological closing operation to obtain smoothed object (Shapiro and 
Stockman, 2001). 

3. Calculate the centre of mass and principal axis angle. 

4. Apply heuristics to adjust principal axis angle. 

5. Calculate the alignment error of two salto actions frame by frame, spatially and 
temporally aligned on the centre of mass. 

6. Calculate the alignment error of two salto actions frame by frame, spatially 
aligned on the centre of mass and temporally aligned by the principal axis. 

Kinematics of Motion 
We exploit the kinematics of saltos by observing that the following two features are the 
most important parameters:  (1) centre of mass and (2) principal axis.  
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Centre of Mass 
According to the law of Newtonian physics, a system of particles can be regarded as a 
single particle at the position of the centre of mass  

r 
r cm with the mass M, which is the 

sum of all the mass of the system of particles ( M = mk1

k= n∑ ).  The following equation 
establishes the position of the centre of the mass by: 

  M
r 
r cm = m1

r 
r 1 + m2

r 
r 2 +L+ mn

r 
r n  

The path of its centre of mass can be replaced as a single particle with the sum of mass 
at the centre and determined by the initial velocity.  As shown Figure 1, the lower graph 
line represents the vertical component of the centre of mass position over the horizontal 
axis which is the timeline based on frame index (33mS/frame @ 30fps).  Like any other 
object thrown into air, the familiar parabolic path of motion is followed using physics 
based model of flight under gravity (neglecting drag) (Halliday et al., 1993). 

 
Figure 1: An example of parabolic flight path of the centre of mass. 

 

 
 

Figure 2: Plot of multiple saltos. Centre of mass Y and principal axis angle is 
represented on frame index (33mS/frame). 

Principal Axis 
The angle of the principal axis of an object is based on the rotational inertia and is 
calculated as follows using a special case equation (Jain et al., 1995) of 2D binary 
image: 
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Calculating the angle of the principal axis has a number of issues.  Unless it is masked 
out, the motion of the trampoline bed can generate horizontal noise as a part of the 
moving object causing errors of the angle as high as 90˚, even though the body posture 
on the bed is close to the straight upright position. 

Another problem is the range of the angle θ  (0˚< ≤θ 180˚) from Equation 5, which 
corresponds to the upper or lower half of the full circle. This causes an 180˚ ambiguity 
of upside-down between the two videos. To solve this problem, a constant angular 
velocity is assumed (or at least the conservation of angular momentum) so any sudden 
change of angle greater than 90˚ is assumed to be a shifting to the upper or lower range 
of circle. 

 
Figure 3: An example of principal axis angular velocity flipping 180˚ angle. The dotted-

line represents the projection of the expected angle. 

 



 113  

Finally, a tucked body shape in the salto action can cause the minimum and maximum 
axes to have similar values, which results in a poor estimate of the principal axis. As 
shown in Figure 3, at the fourth peak of parabolic graph, the angle begins to decrease. 
This eventually loses the tracking angle and can flip to an opposite angle causing an 
error of 180˚. The conservation of angular momentum L can be described as: 

== ωIL a constant, (6) 

 

or 

ffii II ωω = . (7) 

where I is the rotational inertia and ω is the angular velocity. 

While an object in flight may change the rotational inertia from its initial value Ii to a 
smaller or larger value If, the rotational inertia cannot become negative value. Therefore, 
while the angular speed can be increased or decreased (Figure 4), the direction of 
rotation cannot reverse while in flight. 

 
Figure 4: Tracking of centre of mass and principal axis through two video sequences. 

In other words, the sign of the angular velocity (i.e. the tangent of the upper graph in 
Figure 3) cannot be changed, and the angle should be either monotonically increasing or 
decreasing.  The angular velocity direction is allowed to change only at the lowest point 
of the centre of mass while in contact with the trampoline bed. 

This problem is overcome by (1) maintaining the sign of the angular velocity until next 
landing, or by (2) calculating the angular momentum. When the rotational momentum 
becomes as small as a certain threshold value, we interpolate the angle based on the 
current angular velocity. 

 

RESULTS 

Performance 
Intel OpenCV Library and Microsoft MFC were used on a 2GHz PC with 512MB 
memory. The 30fps video clips were adjusted below 20 frames per second to avoid 
dropped frames returned by a slow OpenCV frame grabbing function. 
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Experimental Result 
Figure 5 shows a number of features of the given frame that may be useful for 
synchronisation. The histogram on the right and the histogram at the top are the 
projections of images onto a line obtained by summing rows of pixels and summing 
columns of pixels. The thick white horizontal line inside the circle is a visual cue for 0˚.  
From the two line segments in the circle, one can see the principal axis. A projection 
image histogram is used to identify sudden noise increases such as movement of the 
trampoline bed. 

The box represents the maximum and the minimum centre of mass over all the frames. 
To compute these values, all frames need to be passed once. During the first pass, the 
frame indices of the local extremum – the highest and the lowest point – of the centre of 
mass, are calculated. 

 
Figure 5: An analytical version including: the maximum and the minimum centre of 

mass, principal axis, and histograms of projection. 

 

 
Figure 6: An image with two gymnasts overlapped. 

 

Measurement of Difference 
In this experiment, the measure of how closely the two human body images match is 
calculated as the ratio of the number of pixels overlapped (intersection) to the total 
number of non-zero intensity valued pixels (union).  In Figure 7, the last third column 
images show overlap of the first and the second column images.  The first row is 
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overlapped at the centre of mass, while the second row images are aligned on the 
principal axis as well.  Clearly, in this synchronisation, the overlapped image with both 
centre of mass and the principal axes aligned together produce an improvement of 45% 
that without alignment of the principal axis gained only a 30% to 15% synchronisation 
improvement. 

 
Figure 7: The first row illustrates the alignment error using centre of mass 

synchronisation. The second row illustrates the alignment error using principal axis 
synchronisation. 

 

CONCLUSION 
The experiment demonstrates the detailed discussion of computing kinematics features 
of motion in image sequences. The results indicate that the proposed algorithm is a 
useful method for matching two different motion sequences for comparison and 
analysis. 

We have introduced methods for calculating principal axis angles, and a set of novel 
methods to measure the difference of two image sequences. This temporal 
synchronisation algorithm could also be applied to a number of other applications such 
as video retrieval. 

However, the lack of an explicit human model increases the alignment error since an 
articulated body model is required for more accurate body alignment. 

In future work, this method will be extended to include approaches using particle filters 
(Deutscher et al., 2000) with an articulated human body model (Plänkers and Fua, 2001, 
Rehg and Kanade, 1995). 
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ABSTRACT 
With Australian students shunning the mathematical sciences, it is necessary to take 
every opportunity to publicise interesting mathematical applications. Publicising 
research in the popular media can also have important spin-offs for the researcher as 
well as his department and institution. It will always be important to publish in the 
relevant scientific journal, to be read by the few colleagues who work in your area, and 
gain some research points for your University. But it may also be advantageous to get 
WWW, newspaper, radio or TV coverage. Among the millions of readers or watchers 
there will be colleagues, superiors, future students, possible consulting or research 
project clients who would otherwise not learn about your work.  

In Australia, interest in sport is almost universal, and the anxiousness of the media to 
publish sporting material can be used to overcome their usual avoidance of anything 
scientific. Working in the application area of sport gives us a huge advantage in gaining 
media coverage for our research. Using personal experiences, this paper will discuss 
some of the ways we can realise that advantage. The use of personal contacts, press 
releases, web sites, media guides and special events will be discussed, along with some 
of the necessary characteristics and pitfalls of being a media junkie.  
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INTRODUCTION 
A month after Don Forbes joined Swinburne Sports Statistics to start a PhD on 
Australian Rules football, he was appearing on national television discussing results of 
his research. However he was not discussing football, but his first love of horse racing. 
This followed an enquiry from Today/Tonight on whether we did any research on horse 
racing, and could supply predictions for the Melbourne Cup. While at that stage we had 
no relevant prediction models, Don was happy to spend a couple of days developing 
some simple regression models to forecast the race. This example illustrates our 
willingness to satisfy media requests if possible.  

In contrast to many researchers, we actively seek media coverage of our research 
results. Don has subsequently had television coverage of his PhD work. Michael Bailey 
has also appeared on national television, and along with all my other students has done 
many radio interviews. We believe such coverage aids the individual researcher in their 
career, and enhances the reputation of the researcher’s institution. It is a strategy we 
would like other contributors to this conference to follow.  
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METHODS 
Working in sport in Australia gives us a huge advantage. Newspapers devote a large 
proportion of their paper and often special lift out sections to sport; news bulletins 
always have a special section on sport; both radio and TV have live coverage of 
important sporting events; and there are even radio stations devoted entirely to sport. 
The emphasis Australians place on sport is illustrated by an example from the 
Melbourne based daily The Herald/Sun, the Monday after one of the most tumultuous 
weekends in Victorian politics. Over the weekend the Australian government had sent 
troops overseas to East Timor, which took 4 pages of coverage. In a huge upset, the 
seemingly invincible Kennett Government had fallen in a Victorian election loss, which 
took 17 pages of coverage. The space given to these events meant the Herald/Sun’s 
coverage of sport was reduced to a mere 45 pages.  

The exposure given to sport, generated no doubt by the interest of readers, listeners and 
watchers, means journalists are on the lookout for possible articles. This gives us the 
opportunity to demonstrate scientific methods to the general public.  

Clarke (2002) details some of the ways of creating media interest for scientific research. 
Here we discuss these in a more parochial context.  

www 
The easiest way to publicise your work is through personal pages on the internet. This 
allows you complete control over content and timing, but may lack the flair and 
professional look that a journalist or regular media outlet could contribute. We have 
made great mileage out of our regular weekly sports predictions. These pages were 
among the most popular at Swinburne, with nearly half the hits coming from overseas. 
Some of these hits move on to other Swinburne pages on research or courses. Several of 
our Graduate students first learned of our work through these pages.  
Most media outlets now also have associated web pages. These can create a more 
lasting record than a mere radio, TV or even newspaper interview. They are often more 
accessible to the general public, particularly those overseas. Allsopp and Clarke (2004) 
showed it was better for Test Cricket teams to bat second, rather than first as the so 
called expert commentators would have us believe. Before publication, we sent the 
article to the ABC Science website, which featured it in their Science News of the day. 
This in turn created interest from other outlets and subsequent newspaper articles. 
Moreover, the web pages are still obtainable through their archive system at 
http://www.abc.net.au/science/news/stories/s1074814.htm.  

Press releases 
A press release is a simple way to get the message out to a range of media outlets. It 
must be short and have an angle that will appeal to the media. Editors and producers get 
literally hundreds of these releases every day, and you need to attract their attention. 
However we rarely send out a release without getting some resultant article or request 
for interview. A press release prior to the Sydney Olympics based on a paper given at 
MCS5 on home advantage in the Olympics, resulted in a couple of Newspaper articles, 
a TV news item, and over 15 radio interviews. Events which occur yearly are a good 
candidate for releases. Michael Bailey sent out a press release on the likely winner of 
the Brownlow medal each year, while Tristan Barnett regularly sends out a release 
before the Melbourne tennis open, on some aspect such as likely winner or court 
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surface. Swinburne always send out a press release about my AFL computer tips prior 
to the season. In 2005 this resulted in a Melbourne radio station SEN, Campus review, 
and a couple of local papers taking on the regular publication of the tips. With my 
partial retirement, it is good to see the loose ball being picked up by Michael Bailey. In 
2006 he had several radio interviews following a press release on his pre-season AFL 
ladder predictions. Unfortunately, following his successful PhD completion, it is now 
Monash receiving the media credit.  
Because most institutions value media exposure, there will usually be a unit controlling 
this aspect, and there will be some expert who will assist in preparation of a media 
release. To my knowledge, this conference has never appointed media people to 
coordinate publicity. However the 2003 ICIAM conference in Sydney did so. This 
conference had a one day session on sport, organised by Neville de Mestre, and the 
resulting press release created much media interest. Neville de mestre, Eliot Tonkes, 
Darren O’Shaughnessy and myself all had radio interviews and Newspaper articles.  

Personal contacts 
Once a journalist has interviewed or published an article on your work, it is a good idea 
to try and build up a personal relationship. These people will be predisposed to publish 
future work. I have found journalists who have the onerous task of doing a regular 
column or spot to be particularly amenable to ideas for possible articles. We built up a 
great relationship with Ted Hopkins, when he was writing for the Australian Financial 
review. He published articles detailing virtually all of our past and current research 
work, and we often carried out special analysis to complement an article he was writing. 
That relationship developed into an ARC Linkage grant using Ted’s company as the 
industry partner. We have also built up a good rapport with Justin Kemp who has a 
regular sports program, ‘Run like you stole something’, on community radio. He has 
interviewed me several times and all my PhD students at least once.  
One outlet statisticians might like to consider is Robert Bolton’s regular article, ‘Lies 
and Statistics’, in the Australian Financial Review. Each week this publishes a short 
article signed by the authors on some aspect of statistics that may be different to public 
perception. While often on politics, Robert is quite happy to have articles on sport. We 
have had published letters for Allsopp and Clarke on batting first in Test Cricket, 
Barnett and Clarke on Simpson’s paradox in tennis, Barnett and Rod Cross on court 
surface speed and Barnett and Meyer on comparing men’s and women’s tennis. When 
the queue of future articles gets dangerously short, we now often get an email asking for 
a contribution.  

Reputation and Media Guides 
Once you build up a reputation for media work, you will be approached for comment. 
For example, at the start of every footy season I am usually asked for tips on tipping. At 
some stage in the season a journalist will do an article on how everyone is going in the 
tipping competitions, or home advantage, and I will be contacted for comment. Several 
years ago we were approached by the Media unit for the Australian Grand Prix. They 
knew of our work in football, and wanted similar predictions for motor cycling and F1 
racing. Jonathan Lowe took on the task, and via a simulation we provided predictions 
for the Melbourne races and World Championships. These were included as part of the 
F1 Grand Prix media release, and resulted in several (some overseas) magazine and 
newspaper articles. Swinburne University has a media guide, which lists staff willing to 
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comment to the media on current issues. Lately my listing under gambling has resulted 
in a couple of television interviews. You will also find that media exposure rarely 
comes in ones. In particular, a newspaper article will invariably result in radio 
interviews. Sometimes the reverse occurs.  
With my approaching retirement, for the last few years I have not been actively seeking 
media exposure, yet it seems as busy as ever, driven by approaches from the media 
rather than vice versa. Thankfully most of my previous students have learnt the 
advantages of extended coverage, and are taking over the load.  

 

DISCUSSION 
It should be recognised that publication in the popular press is different to peer 
publications in international journals. It is speedy but less permanent. It does not have to 
be the latest research, but may be relatively simple work. It doesn’t have to be new, so it 
can be recycled. It is less serious and often less accurate. It is consumed less carefully, 
but by more people. To get exposure, it probably has to be interesting or have an angle, 
and almost certainly be current.  

If you wish to use the media, you have to accept its limitations. They will often 
highlight the controversial, and often get things wrong. This once worked in our favour. 
When Michael Bailey did his Brownlow tips (Bailey and Clarke, 2002) he had to 
introduce a dummy variable for fair headed or dark skinned players, as these seemed to 
attract more votes. The Age picked up on this, with an article entitled “Hair's to all those 
Brownlow hopefuls”. We were a bit embarrassed when the ultimate winner was only 
placed 10th in Michael’s table, but bemused when a newspaper article trumpeted that 
Swinburne had got the result correct, as the winner had blonde hair.  

Working in sport you must also be prepared for your research to be treated a bit tongue 
in cheek. I am often publicised as having a degree in Footy tipping, and a newspaper 
cartoon showed the chancellor presenting my degree via a drop kick. When Don was 
asked to produce tips for the Melbourne Cup, he didn’t have 3 years in which to 
produce a proper study. It would have been easy to say we couldn’t satisfy the media 
request. However within a few days Don produced predictions that we could say had 
some basis in Science. He was also prepared to be treated with some degree of 
irreverence. In addition to Don’s scientific tips, the program also asked an astrologer 
and a dog. For years, my computer tips on Adelaide TV regularly had a dog as a 
competitor, and on Adelaide radio we now compete against a guinea pig.  

You also need to try and keep technical jargon to a minimum, and not get hung up on 
the more subtle details – well most of the time. Before Don appeared on TV, we sent 
him down for a crash media course. They stressed the golden rule “Keep it simple”. The 
first thing the interviewer told Don was to make it sound as complicated as possible, so 
he could feign going to sleep while Don discussed the intricacies of regression models.  

 

CONCLUSION 
There are many opportunities for gaining exposure: regular weekly team events in your 
sport, such as football, soccer and cricket; related within competition events such as best 
player awards; other regular events such as tennis majors, Commonwealth and Olympic 
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Games, World Championships. Don’t be restricted to elite competition; local papers are 
interested in local sports events.  

While there are some disadvantages, I believe they are outweighed by the many 
advantages of increased media exposure for your research. Your research becomes 
better known by your colleagues and superiors. Among the millions of readers or 
watchers there will be colleagues, superiors, future students, possible consulting or 
research project clients who might become involved and would otherwise not learn 
about your work. In addition I believe it subtly educates the general public and 
schoolchildren on the pervasiveness and usefulness of mathematics.  

All the persons mentioned in this paper are past attendees at this conference. Many 
other attendees have obtained exposure for their work. I am sure most of them would 
have positive feedback from the experience. Most of the papers at this conference we 
enjoy not because they are within our particular mathematical expertise, but because 
they are about sport. This demonstrates the popular appeal of research work in sport. 
The general public are interested in your research – so tell them about it.  
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USES AND MISUSES OF STATISTICS IN TEAM SPORTS: 
GOALS IN THE BANK? 
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ABSTRACT 
 
Statistics are seen by some people involved in the coaching of sport as a magic potion 
for improving performance, but it is the information extracted from them and how this 
information is applied that makes the difference in improving sporting performance. 
This paper offers examples of the way statistics are misused by coaches in sport and 
how they can be used correctly to positively impact on future performance. 
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INTRODUCTION 
 
Simple statistics in themselves cannot be used as a tool to change future outcomes as 
what they show is merely the distribution of events that have occurred in the past. What 
they do provide is information which, when extracted correctly and applied with the 
right tools, can provide coaches with the ability to take steps to alter future performance.  
 
As they come from a sporting rather than scientific background, coaches generally have 
little understanding of statistical tools such as standard deviation and correlation, or how 
to actually use these tools and other statistical data correctly. Due to this lack of 
understanding, many coaches try to forecast the future through merely looking at 
historical simple statistics. And as Albert Einstein once said, the height of “stupidity” is 
doing the same thing over and over again, and expecting different results. 
 
The most instructive way to show how statistics can be misused and how they can be 
correctly used in sport is through the presentation of an example of each of these. The 
information used for these examples is drawn from Verusco’s GoalSeeker Premier 
Analysis System and the football information database held by the company. 
 
To provide some background, the GoalSeeker Premier Analysis System is a unique and 
comprehensive football analysis tool that delivers an array of statistical data, all linked 
to video footage, in a format that allows for the practical application of the information. 
Every action that occurs during the game and the quality of its execution is inputted 
during the “coding” process, which can take around 40 working hours per game. 
Inputting this amount of information, rather than selectively analysing only some 
actions, allows for a series of Key Performance Indicators (KPIs) to be generated by the 
system. These KPIs highlight the crucial areas of the game and the performance of 
players and teams in these areas.  
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While the technological advances of the last ten years have rapidly progressed the 
functionality and output capability of GoalSeeker Premier, the concept of the system 
and its development was started by company founder Dr. Serrallach around 50 years 
ago. 
 
 
MISUSE OF STATISTICS  
 
Looking firstly at the misuse of statistics, during a recent football season Verusco 
presented GoalSeeker Premier to a Premier League team in England. The team was at 
the time performing poorly, and though it was only halfway through the season, they 
were already in danger of relegation. Prior to the presentation Verusco had ‘coded’, 
down to the level of each individual task, a number of this team’s games in order to 
gather relevant statistical data. 
 
From this raw data, the system was able to generate and output a series of KPIs on the 
team. A KPI is a statistical figure that shows the performance of a team or player either 
in a specific area of the game or in a summary of several areas. Some KPIs have two 
values, one based on option taking (decision making) abilities and the other on the 
execution of the techniques used in that specific or summary area. 
 
There are four KPIs that are very important in football and represent or show:  
 

• Rating: the weighted average of all KPIs  
• Delivery: the ability of players to communicate, pass the ball to team mates or 

put the ball into the net. It also shows the loss of ball possession and recovery by 
the other team allowing them to initiate a counterattack  

• Moves Influence: the ability of a player/team to build attack and create goal 
scoring chances   

• Playing Profile: the mental attitude of the player/team towards the game. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Green = Option Taking   Blue = Technique Execution 

 

                           Figure 1 – Rating KPI for a series of games 
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The trend of the fundamental KPIs showed that the performance of the team was below 
the minimum level required to stay in the Premier League. Three of these KPIs, Rating, 
Delivery and Moves Influence, were outlined in depth to highlight the areas of the game 
in which they were seriously underperforming (see Rating KPI Figure 1). The obvious 
conclusion from the data was that if they did not investigate these areas of concern and 
change on field performance levels, they would be demoted at the end of the season. 
 
The feedback from the people attending the presentation, which included the team’s 
manager and a very high ranking official of the English Football Association, was that 
while all Verusco’s statistics were extremely good, they did not focus on the “real and 
important statistics”. When asked to expand on what they meant by this, the high 
ranking official stated that “real statistics” should include shots at goal, penetration in 
the penalty area, passes into the penalty area and a only few other events. And the 
cornerstone of these “real statistics” was relying on simple historical data such as the 
competition’s averages. For example, it was mentioned that for every 100 shots at goal 
10 goals are scored.  
 
As it could be demonstrated that the team was only scoring at a rate of 5 goals per 100 
shots in the current season, the question of where the other 5 goals were was put to 
them. The reply was that the “goals were in the bank”. When this reply was challenged 
the response was that the GoalSeeker Premier KPI trends were wrong and that the 
“missing goals” would be scored during the rest of the season (balancing out to the 
competition average) and therefore they would win the necessary games to stay in the 
Premier League.  No reply was received when it was asked that as one of the leading 
teams in the Premier League was scoring 15 goals every 100 shots, were they borrowing 
the “goals from the bank” or taking them from the underperforming teams. 
 
It was later learnt that strikers and midfielders of this club were given a quota of shots at 
goal that they were expected to achieve. No mention or expectation was placed on 
quality of these shots at goal. It was thought that if enough shots were sent in the 
direction of the goal, then 10 out of every 100 would somehow end up in the back of the 
net, and that is exactly the flawed thought processes the players took onto the field.  
 
There were two main points reached from the meeting and discussions with this Premier 
League team. First, the way they looked at historical statistics as a direct basis for future 
performance was fundamentally flawed from a statistical standpoint. As chance has no 
memory, goals not scored cannot be recovered at a future time. An increase in goal 
scoring is linked to the quality of performance rather than a straight increase in quantity 
of shots at goal taken. 
 
The second point related to the presentation of complex statistical data from sport in 
ways that coaches can easily access and understand it. The coaches of this team could 
not comprehend the information presented to them and this was partially the result of 
presenting the statistics in a way, using the jargon of professional statisticians and not 
simple language, which made it difficult for a lay person to understand. To be able to 
change the future statistics have to be presented in such a way that the coach is made 
aware, through directing attention to data on trends and the quality of performance, of 
aspects of the game that if they are improved the performance of the team will increase.  
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As a postscript to this case, the team involved was demoted at the end of the season. 
While the players reached their targets on shot quantity, there was no improvement in 
the quality through the rest of the season. At the time of demotion the team still had 31 
“goals in the bank”. 
 
 
CORRECT USE OF STATISTICS  
 
When used correctly statistics can be a powerful weapon in a coach’s armoury. This 
example of the correct use of statistics looks at the delivery (passing) tasks of a player 
and shows the links between the quality of tasks performed and successful outcomes. 
  
From coding a number of games, GoalSeeker Premier is able to generate a Playing 
Profile on individual players. This profile breaks the actions performed by a player into 
4 key task areas so that coaches can examine the separate aspects of a player’s game. 
The Playing Profile of a well known player is shown in Figure 2. 
 
 
 

Figure 2 – Playing Profile KPI 
 
 
 
 
 
 
 
 
 
 
 
 
 
Looking at his Playing Profile, it can be seen that the player performs a higher 
proportion of delivery Task than any of the other technical skill areas, and that there is a 
high level of poorly executed tasks in the delivery area. This indicates that this area 
needs further investigation in order to improve the player’s and team’s performance. 
 
To look into this further we can look at a series of games and break down the delivery 
tasks into subsets for closer examination. Delivery techniques (see Figure 3) can be 
broken down by ball movement at the pass (mobile or static), player movement at the 
pass (mobile or static), the player’s control of the ball (In Possession or One Touch), 
and then examined to find the areas of poor performance.  
 
 
 
 
 
 

 
 

                                                     Figure 2 – Playing Profile 
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Figure 4 – Delivery Tasks Types by Distance from the Delivery KPI 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The GoalSeeker Premier Analysis System also allows the user to break down the 
delivery tasks by the likes of angle on the field and distance of the delivery (see Figure 
4). From looking at all these areas the patterns of play can be seen, and then checked 
against the video to confirm the analysis and to ascertain why there are defects in the 
player’s performance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From analysing all the information linked to the Playing Profile, I was able to ascertain 
that the player has issues in the following areas of his play: 
 

• Delivery quality decreases with the increase in difficulty of the delivery type 
• Difficultly in using instep or inside of foot when delivering ball directly ahead 
• Poor delivery over short distance when under pressure 
• Delivery problems when applying power to the ball 

 
 

Figure 3 – Delivery Tasks Distribution in the Delivery KPI
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With this information a coach can then look to work on the quality of the individual 
player’s skills in these areas with the aim of improving the quality and outcome of the 
actions performed. The emphasis is placed on quality as opposed to quantity and all 
goals set for players to achieve need to be understandable and able to be measured.  
 
This information can be taken a step further to look at the player’s contribution to the 
team’s overall in delivery tasks. As can be seen in Figure 5, this player had an overly 
high proportion of total ineffective delivery tasks in comparison with his share of total 
delivery tasks. He is therefore having in effect a negative influence in the performance 
of the team in this area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From this, and looking at his contribution in the other areas of the game, the value of a 
player to the team can be ascertained. This information can also be viewed from an 
overall club management perspective, linking it to questions such as what was paid for 
the player, was the price paid justified, can weak areas of play be corrected to increase 
the player’s value, and can this help in driving revenue for the club? 
 
 
STATISTICAL TOOLS  
 
The usefulness of using statistics in this way will be limited if once technical 
weaknesses in a player are identified there is no clear system for correcting them. 
Having the player, the coach and the team merely knowing where there is a weakness 
will not in itself improve performance. The technical weakness needs to be addressed in 
order to improve the quality of tasks and therefore team performance. 
 
The natural progression then is to build into the analysis system a techniques structure 
that can identify, isolate and index all the tasks and techniques used by a player during a 
game. By doing this the “perfect” execution of each task and technique can be stored in 
the system, and this can be compared with the execution of tasks by a player in match or 
practice situations. By making this comparison deficiencies in technique can be 
identified and correct technique practised until the task execution of the player meets 
the required level of quality. 
 

 
 

Figure 5 – Player’s Contribution to Team from the Delivery KPI 
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This comparison needs to be made using tools that the player can readily comprehend 
and identify with. Here the use of video footage has proved invaluable as direct 
comparisons can be made between correct task execution, the individual player’s task 
execution, and the task executions of top players at international level. Now being 
added to this is the ability to generate 3D models of tasks and techniques to replicate the 
actions seen in video footage. This allows coaches and players to even more closely 
examine the tasks that are being executed and isolate areas of technique deficiency. 
 
These types of video and 3D analysis tools can then be taken beyond looking at task and 
technique execution and can be applied to other parts of the game such as option taking. 
A player making the correct decision at a crucial point of the game often proves the 
difference between winning and losing. Comprehensive analysis tools incorporating 
video and 3D can provide the functionality of allowing players to “relive” past 
situations or to look at other games involving top level players to learn from the correct 
options taken in similar situations. 
 
 
CONCLUSION  
 
Even at the highest levels of professional sport, examples can be found of statistical data 
being used poorly by coaches who do not understand how to interpret and apply the 
information it provides them with. So what tends to happen is that statistics are used in 
such a simple manner that they have no impact in actually changing future team or 
player performance. 
 
Using statistics correctly requires extracting key information and trends from the data 
and applying it using sound statistical principles. But to do these things you need more 
than just simple statistics and a basic analysis system, you need a complete analysis 
system that: 
 

• Is outcome based 
• Measures tasks by quality not just quantity 
• Delivers in depth statistics to coaches in a way they can understand and use 
• Allows the user to database a large number of games to provide trends 
• Incorporates structured teaching tools 
• Presents information to players in formats they can easily relate to (e.g. linked to 

video and 3D)  
 
Without this type of system coaches will have such limited information that they may 
guess what will be delivered in future performances, but they will powerless to actually 
change the outcome of future performances. 



 129

REDUCING THE LIKELIHOOD OF LONG TENNIS MATCHES 
 
 
Barnett, T.1, Brown, A.1 and Pollard, G.2 
1 Swinburne University, Melbourne, VIC, Australia 
2 University of Canberra, Canberra, ACT, Australia 
 
ABSTRACT 
 
Long matches can cause problems for tournaments. For example, the starting times of 
subsequent matches can be substantially delayed causing inconvenience to players, 
spectators, officials and television scheduling. They can even be seen as unfair in the 
tournament setting when the winner of a very long match, who may have negative 
aftereffects from such a match, plays the winner of an average or shorter length match 
in the next round. Long matches can also lead to injuries to the participating players.  
 
One factor that can lead to long matches is the use of the advantage set as the fifth set, 
as in the Australian Open, the French Open and Wimbledon. Another factor is long 
rallies and a greater than average number of points per game. This tends to occur more 
frequently on the slower surfaces such as at the French Open. The mathematical method 
of generating functions is used to show that the likelihood of long matches can be 
substantially reduced by using the tiebreak game in the fifth set, or more effectively by 
using a new type of game, the 50-40 game, throughout the match.  
 
KEY WORDS 
 
tennis, scoring systems, sport, generating functions, long tennis matches 
 
 INTRODUCTION 
 
In recent years there have been a number of grand slam matches decided in long fifth 
sets. In the third round of the 2000 Wimbledon mens singles, Philippoussis defeated 
Schalken 20-18 in the fifth set. Ivanisevic defeated Krajicek 15-13 in the semi-finals of 
Wimbledon in 1998. In the quarter-finals of the 2003 Australian Open mens singles, 
Andy Roddick defeated Younes El Aynaoui 21-19 in the fifth set, a match taking 83 
games to complete and lasting a total duration of 5 h. The night session containing this 
long match required the following match to start at 1 am. Long matches require 
rescheduling of following matches, and also create scheduling problems for media 
broadcasters. They arise because of the advantage set, which gives more chance of 
winning to the better player (Pollard and Noble, 2002), but has no upper bound on the 
number of games played. It may be in the interests of broadcasters and tournament 
organizers to decrease the likelihood of long tennis matches occurring.  
 
Pollard (1983) calculated the mean and variance of the duration of a best-of-three sets 
match of classical and tiebreaker tennis by using the probability generating function. It 
is well established that the mean and standard deviation completely describe the normal 
distribution. When a distribution is not symmetrical about the mean, the coefficients of 
skewness and kurtosis, as defined in Stuart and Ord (1987), are important to graphically 
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interpret the shape of the distribution. This commonly has been done by using the 
probability or moment generating function. The cumulant generating function (taking 
the natural logarithm of the moment generating function), can also be used to calculate 
the parameters of the distribution in a tennis match. The cumulant generating function is 
particularly useful for calculating the parameters of distributions for the number of 
points in a tiebreaker match, since the critical property of cumulant generating functions 
is that they are additive for linear combinations of independent random variables. 
 
 The layout of this paper is as follows. For convenience of the less mathematically 
inclined we defer the presentation of the mathematics of generating functions applied to 
tennis till Section 3. Instead we will begin in Section 2 with a discussion on several 
aspects of long matches, relying on graphical results to advance our arguments as to 
how they might be curtailed. We aim to show that the likelihood of long matches can be 
substantially reduced by using the tiebreak game in the fifth set, or more effectively by 
the use of a new type of game, the 50-40 game (Pollard and Noble, 2004), throughout 
the match. In Section 4 we make some concluding remarks. 
 
 DISCUSSION OF THE PROBLEM (using graphical results) 
 
Up until 1970 (approx), all tennis sets were played as advantage sets, where to win a set 
a player must reach at least 6 games and be ahead by at least 2 games. The tiebreaker 
game was introduced to shorten the length of matches. A tiebreaker game is played 
when the set score reaches 6-games all. However in three of the four grand slams 
(Australian Open, French Open and Wimbledon), an advantage set is still played in the 
deciding fifth set. Figure 1 represents a comparison of a match with 5 advantage sets 
(5adv), 5 tiebreaker sets (5tie) and 4 tiebreaker sets with a deciding advantage set 
(4tie1adv). The probability of each player winning a point on serve is given as 0.6 to 
represent averages in men’s tennis. The long tail given by the match with 5adv gives an 
indication as to why the tiebreaker game was introduced to the tennis scoring system. 
 
 It is well known that the dominance of serve in men’s tennis has increased since the 
introduction of the tiebreaker game. This creates a problem when two big servers meet 
in a grand slam event where the deciding fifth set is played as an advantage set. Figure 2 
represents a match with 4tie1adv for different values of players winning points on serve. 
It shows that for two strong servers winning 0.7 of points on serve, there is a long tail in 
the number of points played. In comparison with Figure 3, which represents a match 
with 5tie, the tail is substantially reduced for two players winning 0.7 of points on serve.  
 
Figure 4 represents a match with 5 tiebreaker sets, where a standard ‘deuce’ game is 
replaced by a 50-40 game. It shows an even greater improvement to reducing the 
number of points played in a match compared to Figure 3. In the 50-40 game the server 
has to win the standard 4 points, while the receiver only has to win 3 points. Such a 
game requires at most 6 points. 
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Figure 1: Distribution of a match with different scoring systems 
 
 

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

0

4
0

8
0

1
2
0

1
6
0

2
0
0

2
4
0

2
8
0

3
2
0

3
6
0

4
0
0

4
4
0

4
8
0

5
2
0

5
6
0

6
0
0

6
4
0

50% 60% 70%

 
Figure 2: Distribution of an advantage match (4tie1adv) for different values of players 
winning points on serve 
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Figure 3: Distribution of a tiebreaker match (5tie) for different values of players 
winning points on serve 
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Figure 4: Distribution of a tiebreaker match (5tie) for different values of players 
winning points on serve, by using 50-40 games instead of standard ’deuce’ games 
 
 THE MATHEMATICS OF GENERATING FUNCTIONS 
 
 Modelling a tennis match 
 
Forward recursion 
The state of a tennis match between two players is represented by a scoreboard. The 
scoreboard shows the points, games and sets won by each player, and is updated after 
each point has been played. It is assumed that the conditional probability of the server 
winning the point depends only on the data shown on the scoreboard. This enables the 
progress of the match to be modelled using forward recursion. An additional assumption 
is that the probabilities of each player winning a point on his own service remain 
constant throughout the match. 
 
Development of generating functions of distributions 
 
The forward recursion enables the probabilities of various possible scoreboards to be 
calculated. These probabilities can be collected in the form of probability generating 
functions, or equivalently, moment generating functions (using the transformation      
v = eu). 
 
Lemma: If X and Y are independent random variables and Z = X + Y then:  
 mZ(t) = mX(t) * mY (t). 
 
It becomes convenient at times to take logarithms, and work in terms of cumulant 
generating functions, since KZ(t) = KX(t) + KY (t). 
 
The higher order cumulants depend on powers of the scale for the random variable, and 
for the purposes of communication it is useful to transform them into non-dimensional 
statistics (i.e. numbers) such as the coefficients of variation, skewness and kurtosis. 
 
The inversion of the cumulants using normal power approximation 
 
This gives a continuous approximation to a discrete distribution (Pesonen, 1975). The 
formula is asymptotic and works reasonably well for unimodal distributions with the 
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coefficient of skewness less than 2 and the coefficient of kurtosis less than 6. i.e. tails 
die off at least as fast as the exponential distribution. 
 
The number of points in a game 
 
Let X be a random variable of the number of points played in a game. Let fpg

A (x) 
represent the distribution of the number of points played in a game for player A serving, 
where fpg

A (x) = P(X = x). This gives the following: 
 
fpg

A (4) = Npg
A (4, 0) + Npg

A (0, 4) 
fpg

A (5) = Npg
A (4, 1) + Npg

A (1, 4) 
fpg

A (6) = Npg
A (4,2) + Npg

A (2, 4) 
fpg

A (x) = Npg
A (3, 3)[p2

A + (1 - pA)2][2pA(1 - pA)] (x-8)/2 , if x = 8, 10, 12, ..... 
 
where: 
Npg

A(a,b) represents the probability of reaching point score (a,b) in a game for player A 
serving 
pA represents the probability of player A winning a point on serve 
 
Croucher (1986) gives algebraic expressions for calculating Npg

A (a,b). 
 
Let m(t) denote the moment generating function X. Generating functions can be used to 
describe a distribution, such as fpg

A(x) for all x. It is well established (Stuart and 
Ord,1987) that the mean, variance, coefficient of skewness and coefficient of kurtosis of 
X can be obtained from generating functions. 
 
The moment generating function for the number of points in a game for player A 
serving, mpg

A (t), becomes: 
 
∑x etxfpg

A(x)=e4tfpg
A(4)+e5tfpg

A(5)+e6tfpg
A(6)+[Npg

A(3,3)(1-Npg
A(1,1))e8t] / [1-Npg

A(1,1)e2t] 
 
The mean number of points in a game Mpg

A , with the associated variance Vpg
A are 

calculated from the moment generating function using Mathematica and given as: 
 

M pg
A =

)}A- p (1A2p-  {1
 1}-1]-  2)A- p (12

A)[6pA- p (1A4{p
 

 

V pg
A = 2)]A- p (1A2p- [1

 )))]2)A- p (12
A12p  )(5A- p (1A- p)(3 A- p (1A12p-  )(1A- p (1A- p )[1A- p (1A4p +

 

 
Similar expressions can be obtained for the coefficient of skewness Spg

A, and the 
coefficient of kurtosis Kpg

A . 
Let Upg

A represent the standard deviation of the number of points in a game for player A 
serving. Let Cpg

A represent the coefficient of variation of the number of points in a game 
for player A serving. It follows that Upg

A = √V pg
A and Cpg

A = Upg
A / Mpg

A.  
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Table 1: The parameters of the distributions of points in a game for different values of 
pA 

pA Mpg
A Upg

A Cpg
A Spg

A Kpg
A 

0.50 6.75 2.77 0.41 2.16 6.95 
0.55 6.68 2.73 0.41 2.17 7.01 
0.60 6.48 2.59 0.40 2.20 7.21 
0.65 6.19 2.37 0.38 2.25 7.59 
0.70 5.83 2.10 0.36 2.34 8.25 
0.75 5.45 1.78 0.33 2.46 9.27 

 
 
Table 1 represents Mpg

A , Upg
A , Cpg

A , Spg
A and Kpg

A for different values of pA. Notice 
that the mean and standard deviation are greatest when pA = 0.50, but the coefficients of 
skewness and kurtosis are greatest when pA approaches 1 or 0. The generating functions 
to follow are for player A serving first in the tiebreaker game or set. 
 
The moment generating function for the number of points in a tiebreaker game, mpgT

A(t) 
becomes: 
 
m pgT A (t) = e7tf pgT

A (7)+e8tf pgT
A(8)+e9tfpgT

A(9)+e10tfpgT
A(10)+e11tf pgT

A(11)+e12tfpgT
A(12)+ 

N pg T 
A (6,6)(1-N pg T

A (1,1))e14t / [1-N pg T A (1,1)e2t] 
 
where: 
f pgT

A(x) represents the distribution of the number of points played in a tiebreaker game 
N pgT

A(a,b) represents the probability of reaching point score (a,b) in a tiebreaker game 
 
The moment generating functions for the number of games in a tiebreaker set, mgsT

A(t) 
and advantage set, mgs

A(t) become: 
 
mgsT

A(t)=e6tfgsT
A(6)+e7tfgsT

A(7)+e8tfgsT
A(8)+e9tfgsT

A(9)+e10tfgsT
A(10)+e12tfgsT

A(12)+ 
e13tfgsT

A(13) 
 
mgs

A(t) = e6tfgs
A(6)+e7tfgs

A(7)+e8tfgs
A(8)+e9tfgs

A(9)+e10tfgs
A(10)+  

Ngs
A (5,5)(1-Ngs

A(1,1))e12t / [1-Ngs
A (1,1)e2t] 

 
where: 
fgsT

A (x) represents the distribution of the number of games played in a tiebreaker set 
fgs

A (x) represents the distribution of the number of games played in an advantage set 
Ngs

A(c, d) represents the probability of reaching (c,d) in an advantage set 
 
 
 
The number of points in a set 
 
The parameters of distributions of the number of points in a set 
 
Let mpg

A+(t) and mpg
A-(t) be the moment generating functions of the number of points in 

a game when player A wins and loses a game on serve respectively. Let mpg
B+(t) and 
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mpg
B-(t) be the moment generating functions of the number of points in a game when 

player B wins and loses a game on serve respectively. Let s(c, d) be the moment 
generating function of the number of points in a set conditioned on reaching game score 
(c,d). It can be shown that  
s(6,1) = 3[mpg

A+(t)]3[mpg
B-(t)]2[mpg

A+(t)mpg
B+(t) + mpg

A-(t)mpg
B-(t)] and  

s(1,6) =3[mpg
A-(t)]3[mpg

B+(t)]2[mpg
A+(t)mpg

B+(t)+mpg
A-(t)mpg

B-(t)]. Similar conditional 
moment generating functions can be obtained for reaching all score lines (c, d) in a set. 
The moment generating function for the number of points in a tiebreaker set becomes: 
 
mpsT

A(t) = NgsT
A(6, 0)s(6,0) + NgsT

A (6,1)s(6,1) + NgsT
A (6,2)s(6,2) + NgsT

A (6,3)s(6,3) 
+NgsT

A(6,4)s(6,4)+NgsT
A(7,5)s(7,5)+NgsT

A(0,6)s(0,6)+NgsT
A(1,6)s(1,6)+NgsT

A(2,6)s(2,6)+ 
NgsT

A(3,6)s(3,6) + NgsT
A(4,6)s(4,6) +NgsT

A (5,7)s(5,7) + NgsT
A (6,6)s(6,6)mpgT

A (t) 
 
A similar moment generating function can be obtained for the number of points in an 
advantage set. 
 
Let Mps

A , Ups
A , Cps

A ,  Sps
A and Kps

A represent the mean, standard deviation, and 
coefficientsof variation, skewness and kurtosis for the number of points in an advantage 
set. Let MpsT

A , UpsT
A , CpsT

A , SpsT
A and KpsT

A represent the mean, standard deviation, and 
coefficients of variation, skewness and kurtosis for the number of points in a tiebreaker 
set. Table 2 represents Mps

A , Ups
A , Cps

A , Sps
A , Kps

A , MpsT
A , UpsT

A , CpsT
A , SpsT

A and 
KpsT

A for different values of pA and pB. The table covers values in the interval            
0.50 ≤ pA ≤ pB ≤ 0.75 as this is the main area of interest for men’s professional tennis. 
It can be observed that: Mps

A > MpsT
A , Ups

A > UpsT
A , Cps

A > CpsT
A, Sps

A > SpsT
A and Kps

A 
> KpsT

A . 
 
The mean number of points in a set is affected by the mean number of points in a game 
and the mean number of games in a set. The mean number of points in a game is 
greatest when pA or pB = 0.50. For a tiebreaker set, when pA = pB = 0.50, Mpg

A = Mpg
B = 

6.75, MgsT
A =9.66 and MpsT

A = 65.83. When pA = pB = 0.70, Mpg
A = Mpg

B = 5.83, MgsT
A = 

10.94 and MpsT
A = 66.22. For this latter case, even though the mean length of games is 

shorter, the mean number of points in a tiebreaker set overall is greater since more 
games are expected to be played. Both players have a 0.90 probability of holding serve, 
which means that very few breaks of serve will occur and there is a 0.38 probability of 
reaching a tiebreaker. This is further exemplified in an advantage set, where for pA = pB 
= 0.70, Mps

A = 86.43. This is also highlighted by the coefficients of variation, skewness 
and kurtosis being much greater for an advantage set, compared to a tiebreaker set, 
when pA and pB are both “large”. 
 
Approximating the parameters of distributions of the number of points in a set 
 
The moment generating function for the number of points in an advantage set mps

A(t), 
when pA = 1 - pB, becomes: 
 
mps

A(t)=[fgs
A(6)](mpg

AB)6+[fgs
A(7)](mpg

AB)7+[fgs
A(8)](mpg

AB)8+[fgs
A(9)](mpg

AB)9+ 
[fgs

A(10)](mpg
AB)10+Ngs

A (5,5)(1-Ngs
A (1,1))(mpg

AB)12 / [1-Ngs
A (1,1)(mpg

AB)2] 
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where: mpg
AB(t) = [mpg

A(t)+mpg
B (t)]/2 is the average (in this case equal) of two moment 

generating functions. 
 
Table 2: The parameters of the distributions of points in a tiebreaker and advantage set 
for different values of pA and pB 
pA pB MpsT

A UpsT
A CpsT

A SpsT
A KpsT

A Mps
A Ups

A Cps
A Sps

A Kps
A 

0.50 0.50 65.83 16.54 0.25 0.55 -0.04 67.71 21.15 0.31 1.62 4.75 
0.50 0.60 61.99 15.97 0.26 0.65 0.18 63.39 19.76 0.31 1.71 5.39 
0.50 0.70 54.73 13.75 0.25 0.85 0.88 55.39 16.01 0.29 1.89 7.46 
0.50 0.75 51.64 12.44 0.24 0.89 1.20 52.06 14.08 0.27 1.92 8.44 
0.60 0.60 65.59 16.03 0.24 0.55 -0.18 69.32 24.92 0.36 2.12 7.27 
0.60 0.70 63.08 14.99 0.24 0.58 -0.15 68.35 27.97 0.41 2.60 10.22 
0.60 0.75 60.67 14.32 0.24 0.63 -0.05 66.01 28.12 0.43 2.83 11.98 
0.70 0.70 66.22 14.96 0.23 0.25 -0.81 86.43 53.11 0.61 2.47 8.67 
0.75 0.75 67.59 13.74 0.20 -0.15 -0.82 125.50 101.81 0.81 2.24 7.22 
 
Taking the natural logarithm of the moment generating function gives an alternative 
generating function known as the cumulant generating function. Let κpg

A(t)=ln[mpg
A(t)] 

represent the cumulant generating function for the number of points in a game. This 
relationship can be inverted to give mpg

A (t) = eκpgA(t).  
 
The moment generating function, mps

A (t), can be written as: 
 
mps

A(t)=fgs
A(6)e6κpgAB(t)+fgs

A(7)e7κpgAB(t)+fgs
A(8)e8κpgAB(t)+fgs

A(9)e9κpgAB(t)+ fgs
A(10)e10κpgAB(t)+ 

Ngs
A(5,5)e12κpgAB(t) [1-Ngs

A(1,1)] / [1-Ngs
A(1,1)e2κpgAB(t)], when pA = 1 - pB 

 
where: κpg

AB(t) = [κpg
A(t)+ κpg

B (t)]/2 is the average (in this case equal) of two cumulant 
generating functions. 
 
This can be expressed as: 
 
mps

A (t) = mgs
A (κpg

AB(t))                                                                                                  (1) 
 
Similarly, the following result is established for mpsT

A (t), when pA = 1 - pB: 
 
mpsT

A (t) = mgsT
A (κpg

AB(t)) + NgsT
A(6,6)e12κpgAB(t) (eκpgTA (t) - eκpgAB(t))                               (2) 

 
Notice the last term does not vanish due to the difference in the scoring system for a 
tiebreaker game compared with a regular game. Equations 1 and 2 can be used to obtain 
approximate results for the parameters of distributions for the number of points in a set, 
when pA is not equal to 1 - pB. 
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The number of points in a match 
 
From this point an advantage match is considered as a match where the first four sets 
played are tiebreaker sets and the fifth set is an advantage set. 
 
The moment generating functions for the number of points in an advantage and 
tiebreaker match, mpm(t) and mpmT(t), when pA = 1 - pB become: 
 
mpmT(t) = msm(κpsT

AB (t)) 
 
mpm(t) = msm(κpsT

AB (t)) + Nsm(2,2) e4κpsTAB (t)  (e κpsAB(t) - e κpsTAB (t) ) 
 
where: κpsT

AB (t) = [κpsT
A (t)+ κpsT

B (t)] / 2 and κps
AB (t) = [κps

A (t)+ κps
B (t)] / 2 

  
The following approximation results can be established for the number of points in a 
match, similar to the approximation results established for the number of points in a set:  
 
mpmT(t) ≈ msm(κpsT

AB (t)) for all values of pA and pB. 
 
mpm(t) ≈ msm(κpsT

AB (t)) + Nsm(2,2) e4κpsTAB (t)  (e κpsAB(t) - e κpsTAB (t) ) for all values of pA and 
pB. 
 
Approximation results for distributions of points in a match, could also be established 
for tennis doubles by using the above results established for singles. The probability of a 
team winning a point on serve is estimated by the averages of the two players in the 
team.  
 
When pA = 1-pB, the distribution of number of points played each set if player A serves 
first in the set, is equal to the number of points played each set if player B serves first in 
the set. This leads to the following result: 
 
The number of points played each set in a match are independent, if pA = 1 - pB. 
 
Suppose Z = X + Y , where X and Y are independent, then it is well known that 
mZ(t) = E[eZt] = E[eXt]E[eY t] = mX(t)mY (t). By taking logarithms it follows that 
κZ(t) = κX(t) + κY (t). 
 
An extension of this property of cumulants is given by the following theory (Brown, 
1977) and can be applied to points in a tiebreaker match when the number of points 
played each set in a match are independent. When the independence assumption fails to 
hold the theory remains approximately correct according to the approximation result 
established for points in a tiebreaker match. 
 
Theorem 
 
If Z = X1 + X2 +……… + XN where Xi are i.i.d. then κZ(t) = κN(κX(t)) 
Taking the derivatives of the result and setting t = 0 gives the following useful results in 
terms of cumulants: 
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k(1)
Z = k(1)

N k(1)
X 

k(2)
Z = k(2)

N [k(1)
X ]2 + k(1)

N k(2)
X 

k(3)
Z = 3k(1)

X k(2)
N k(2)

X + [k(1)
X ]3k(3)

N + k(1)
N k(3)

X 
k(4)

Z = 3k(2)
N [k(2)

X ]2 + 6[k(1)
X ]2k(2)

X k(3)
N + 4k(1)

X k(2)
N k(3)

X + [k(1)
X ]4k(4)

N + k(1)
N k(4)

X 
 
For example the mean number of points in a tiebreaker match, MpmT, with the associated 
variance, V pmT, can be calculated from the cumulant generating function as: 
 

MpmT = MpsTMsm 
 

V pmT = V sm(MpsT )2 +MsmV psT 

 
where: 
MpsT represents the mean number of points in a tiebreaker set 
Msm represents the mean number of sets in a tiebreaker match 
V psT represents the variance of the number of points in a tiebreaker set 
V sm represents the variance of the number of sets in a tiebreaker match 
 
Let Mpm , Upm , Cpm , Spm and Kpm represent the mean, standard deviation, and 
coefficients of variation, skewness and kurtosis for the number of points in an 
advantage match. Let MpmT , UpmT , CpmT , SpmT and KpmT represent the mean, standard 
deviation, and coefficients of variation, skewness and kurtosis for the number of points 
in a tiebreaker match. Tables 3 and 4 represent the exact parameters of the distributions 
for an advantage and tiebreaker match for different values of pA and pB. The results 
agree with Pollard (1983) for a best-of-three sets tiebreaker match. It shows that the 
mean, standard deviation, coefficients of variation, skewness and kurtosis of the number 
of points played are greater for an advantage match, compared to a tiebreaker match. 
Also included in the tables are the probabilities of the match lasting for at least n points, 
represented by P(n) for an advantage match and Q(n) for a tiebreaker match. These 
probabilities were calculated using the NP-expansion technique (Pesonen, 1987). Notice 
that when pA and pB become “large”, the probability of playing at least 400 points in an 
advantage match is considerably greater than for a tiebreaker match. This is some 
justification as to why an advantage match can seemingly never end with two strong 
servers.  
 
Table 5 represents the exact parameters of distributions for a tiebreaker and an 
advantage match using 50-40 games, along with the probability of a match going 
beyond 300 points. For an extreme case, when pA = pB = 0.75, the probability of an 
advantage match going beyond 300 points is 0.06. In comparison to Tables 3 and 4, the 
probability of an advantage or tiebreaker match going beyond 300 points is 0.38. This 
shows that replacing standard ‘deuce’ games with 50-40 games, substantially decreases 
the likelihood of long matches occurring.  
 
It is often the case that by shortening the length of matches, decreases the probability of 
winning for the better player. However this is not necessarily the case as shown by 
replacing standard ‘deuce’ games with 50-40 games. Table 6 represents the probabilities 
of winning under four different scoring systems, for different values of pA and pB. 
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Notice when pA=0.75 and pB = 0.70, the probability of player A (the stronger player) 
winning using 50-40 games is greater than using standard ‘deuce’ games. 
 
Table 3: The parameters of the distributions of points in an advantage match for 
different values of pA and pB 

pA pB Mpm Upm Cpm Spm Kpm P(300) P(350) P(400)
0.50 0.50 272.27 62.58 0.23 0.13 -0.54 0.33 0.12 0.02 
0.55 0.55 272.10 62.55 0.23 0.15 -0.51 0.33 0.12 0.02 
0.60 0.60 271.96 62.85 0.23 0.21 -0.37 0.33 0.12 0.02 
0.65 0.65 273.48 65.13 0.24 0.40 0.14 0.32 0.12 0.03 
0.70 0.70 280.72 74.16 0.26 0.92 1.96 0.34 0.15 0.06 
0.75 0.75 300.52 103.49 0.34 1.89 6.23 0.38 0.22 0.12 

 
Table 4: The parameters of the distributions of points in a tiebreaker match for different 
values of pA and pB 

pA pB MpmT UpmT CpmT SpmT KpmT Q(300) Q(350) Q(400)
0.50 0.50 271.56 61.40 0.23 0.06 -0.67 0.33 0.11 0.02 
0.55 0.55 271.25 61.12 0.23 0.06 -0.67 0.33 0.11 0.02 
0.60 0.60 270.56 60.42 0.22 0.06 -0.69 0.32 0.10 0.01 
0.65 0.65 270.52 59.77 0.22 0.05 -0.73 0.32 0.10 0.01 
0.70 0.70 273.14 59.64 0.22 0.02 -0.79 0.34 0.11 0.01 
0.75 0.75 278.81 59.54 0.21 -0.04 -0.88 0.38 0.13 0.02 

 
Table 5: The parameters of the distributions of points in a tiebreaker and advantage 
match using 50-40 games for different values of pA and pB 

pA pB MpmT UpmT CpmT SpmT KpmT Q(300) Mpm Upm Cpm Spm Kpm P(300) 
0.50 0.50 198.43 44.01 0.22 0.05 -0.71 0.01 198.94 44.93 0.23 0.14 -0.54 0.02 
0.55 0.55 199.71 44.39 0.22 0.05 -0.71 0.02 200.09 45.08 0.23 0.11 -0.58 0.02 
0.60 0.60 201.93 44.89 0.22 0.05 -0.71 0.02 202.31 45.58 0.23 0.11 -0.58 0.02 
0.65 0.65 205.18 45.52 0.22 0.05 -0.71 0.02 205.71 46.47 0.23 0.14 -0.53 0.03 
0.70 0.70 209.79 46.40 0.22 0.06 -0.71 0.03 210.71 48.10 0.23 0.21 -0.38 0.04 
0.75 0.75 216.64 47.81 0.22 0.06 -0.73 0.05 218.71 51.70 0.24 0.39 0.12 0.06 

 
Table 6: The probabilities of winning a tennis match under different scoring systems  
 standard games 50-40 games 

pA pB pm pmT pm pmT 
0.51 0.50 0.567 0.567 0.554 0.554 
0.55 0.50 0.800 0.799 0.754 0.754 
0.60 0.50 0.952 0.951 0.918 0.917 
0.61 0.60 0.565 0.564 0.557 0.557 
0.65 0.60 0.789 0.785 0.764 0.763 
0.70 0.60 0.941 0.938 0.927 0.926 
0.71 0.70 0.560 0.558 0.559 0.559 
0.75 0.70 0.772 0.760 0.775 0.772 
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 CONCLUSION 
 
The mathematical methods of generating functions have been used to calculate the 
parameters of distributions of the number of points in a tennis match. The results show 
that the likelihood of long matches can be substantially reduced by using the tiebreak 
game in the fifth set, or more effectively by using the 50-40 game throughout the match.  
 
We used the number of points played in a match as a measure of its length. This 
measure is related to the time duration of the match and avoids the complications of 
delays between points, at change of serve, at change of end, injury time and weather 
delays. Further work could involve calculating the time duration of a match from the 
results presented in Subsection 3.4. This could then be used to calculate the probabilities 
of the match going beyond a given amount of time. This would provide commentators 
and tournament officials with very useful information on when the match is going to 
finish. 
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ABSTRACT 
The Swinburne Computer has been predicting match winners, margins, odds, and final 
ladder order since 1981. Although its predictions are published early in the week, before 
team selections are made, this paper shows the computer’s performance compares 
favourably with that of media experts and the public. This suggests that far from making 
predictive use of extra information, humans do not individually process correctly the 
publicly available information. Combining their forecasts may produce better 
predictions. Evidence suggests the computer’s predictions can be used to exploit market 
inefficiencies, not only early in the week when prices are first set, but also late in the 
week when prices have adjusted following team selections.  

 

KEY WORDS 
sports, Australian rules football, forecasting, betting 

 

INTRODUCTION 
All sporting events are preceded by predictions of the outcome, almost invariably made 
by human experts. Since the experts are close to the sport, have their ear to the ground, 
are privy to information not available to the general public, we may believe their 
predictions are somehow more accurate. But rarely is the performance of these (so 
called) experts critically examined. In AFL, a whole army of experts give detailed 
predictions of the winner and margins of each match. In addition newspapers publish 
bookmaker lines and odds for each match. These presumably contain the public's 
forecast (or at least the bookmaker's perception of the public forecast).  

The Swinburne Computer tips (Clarke, 1988) have been published in the media for over 
20 years. Clarke (1993) discusses the program’s methods, which have been unchanged 
since 1986 when it was rewritten using a more complicated error function. The program 
uses as input data only the order of the matches, the names of the competing teams and 
venue, and the final scores of previous matches. It does not use other information which 
many followers would believe is critical to selecting winners - the actual players 
selected, the time of the match (day or night), the elapsed time since a team’s last 
match, the weather conditions, etc. The program predicts not only the winner of an 
upcoming match, but the expected margin in points, the chance of each team winning, 
and via a simulation of the remainder of the year, the chance of each team finishing the 
home and away series in any position.  
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Despite the paucity of input data, indications are that the program has performed better 
than the average expert tipster. Clarke (1992) gives a table showing that in 1991 only 2 
the 22 expert tipsters from The Age and the Herald/Sun had a greater percentage correct 
than the computer, and the computer’s percentage correct was 3.4% higher than the 
average of the experts. In terms of predicted margins, only one of the 21 Herald/Sun 
experts and celebrity tipsters was closer than the computer, and the computer’s margin 
of error was 1.5 points per match closer than the average of the experts.  

In 2002 the program was marketed via Ozmium Ltd to punters (see 
www.smartgambler.com.au). Over the intervening years, information has been collected 
in an ad hoc manner on the computer’s and various humans’ performance. This paper 
compares the performance of the program to human tipsters in picking winners, margins 
and odds of winning, and investigates the profit made by using various betting 
strategies. We demonstrate that the computer in general performs better than humans, 
and that inefficiencies do exist in the AFL betting market.  

 

COMPARISON WITH EXPERTS IN SELECTING WINNERS AND MARGINS.  
In 2002 the computer correctly predicted 126 winners, including the finals and with 
draws counting as wins. This is about 68% correct, which is close to its long term 
average. The average margin of error in the predicted margin of victory of 28.8 points is 
again close to its long term average. This compares with an average of 121 winners and 
average error of 30.8 points for the 14 experts in The Herald/Sun and 16 experts in The 
Age. On a combined table of 30 experts and two computers (Swinburne and The Age), 
the Swinburne computer comes fifth in terms of winners. There appears to be no 
difference in the ability of The Herald Sun and The Age tipsters to pick winners – both 
Herald Sun and Age tipsters averaged just fewer than 121 winners, and the average rank 
of the Age was 16.9 compared with 16.7 for The Sun. In terms of margins, the 
Swinburne computer would come in second on the table. There did appear to be a 
difference in the ability of The Sun and The Age tipsters to pick margins – the average 
rank of the Age was 13.0 compared with 21.6 for The Sun. While Pearce topped the 
table in both categories, clearly some tipsters performed well at selecting winners, but 
poorly at margins. For example, both Timms and Horan were in the top 7 in the first 
category, but the bottom 8 in the second. It remains to be seen whether these trends are 
consistent from year to year.  

It is interesting to compare how some standard methods would have performed. For 
example, picking the home side to win by 0 points would give 123 winners and have 
placed you twelfth on the combined table of winners but 29th in margins. Picking the 
favourite of The Age tipsters (ie the team selected to win by more than half the tipsters) 
would do the same. But calculating the average home margin of The Age tipsters and 
selecting the home side if this is positive would have resulted in 127 winners and an 
average margin of error of 28.8 points. This puts you equal third on the winner’s table, 
and equal second on the margin table. This seems to indicate that combining the 
expert’s tips along with their strength of belief as contained in their margin prediction 
can produce better results than combining their predicted winners.  

However, care should be taken in judging performance on a single year. This applies 
particularly to the number of winners, which can be quite variable from year to year. 
Tips have been collected and collated for the 17 tipsters (16 humans and 1 computer) in 
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The Age for each year from 2000-2002. With the Swinburne computer this made 18 
tipsters. The Swinburne computer came 2nd, 5th and 2nd in each year’s winners tables, 
and 1st, 1st and 2nd in the margins tables. Table 1 shows the combined table for the 3 
years for the 12 tipsters who predicted each year, along with the Swinburne computer, 
The Age computer and the records of some other possible strategies. The computer 
comes top in both number of winners and total margin of error. The 12 experts averaged 
363.3 winners with a standard deviation of 8.2, and averaged an error in the margin of 
32.6 with a standard deviation of 0.7. This placed the computer 2.0 and 2.7 standard 
deviations better than their average. Clearly in the long run the Swinburne computer is 
better than human tipsters in both winners and margins.  

 

Table 1: Comparison of Swinburne computer and The Age experts:  
winners and margin tipping totals 2000-2002.  

Tipster Number 
of 

winners

 Tipster Average 
Error in 
Margin 

Swin Computer 380  Swin Computer 30.7 

Ryan 380  Aver Age Margin  31.0 

Aver Age Margin 375  Pearce 31.9 

Pearce 374  Walls 31.9 

Age computer 370  Connolly 32.0 

Age favourite 369  Ryan 32.0 

Baum 368  Niall 32.4 

Walls 367  Lyon 32.4 

Connolly 364  Baum 32.4 

Reilly 364  Age computer 32.7 

Lyon 362  Reilly 32.7 

Niall 360  Johnson 32.8 

Johnson 359  Brereton 32.9 

Brereton 356  McClure 33.0 

McClure 356  Wilson 34.4 

Wilson 350  Age favourite 35.2 

Home side 327  Home side 35.5 

 
In 2003 the computer had an ordinary season with winners, coming equal eighth when 
compared with 18 Herald Sun experts, but still topped the margin table. Its 120 winners 
was slightly better than the 118.8 averaged by the experts, but its average error of 27.4 
was more then 2 better than the average of the experts.  
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In 2004, with 126 winners at a strike rate of 68.1% at the end of the Finals the computer 
would have been placed fourth when compared with the Herald Sun 18 experts, three 
behind the winner. The computer had 10 winners more than their major writer Sheahan, 
and nearly 6 winners more than the average of the Herald Sun experts (120.1 winners). 
Again the computer outperformed all the experts in margin prediction. With an average 
error of 29 points the computer averaged nearly 2 pts a game closer than the best expert, 
and 3.5 pts per game better than the average of the experts.  

 

COMPARISON OF COMPUTER ODDS WITH BETTING MARKETS 
The computer gives a probability of victory for each team. While media experts do not 
regularly give this, comparisons can be made with humans via tipping competitions and 
published bookmaker odds.  

Monash University run three tipping competitions, one of which requires entering the 
probability of each team winning. The score is based on the logarithm of the probability 
you give to the team that actually wins. This is a scientifically based score, which 
statisticians call the likelihood, and computer scientists the information content. The 
results are obtainable from www.csse.monash.edu.au/footy . Note that not all of the 
entrants in this competition are human – it is to be expected that in a competition run by 
a computer science department many may be driven by computer algorithms.  

In 2004 Rod entered the Swinburne computer tips probabilities each week in the 
Monash probabilistic tipping site under the pseudonym Drtipper. We missed putting in 
one tip on a Friday, which cost us about half a point. Nevertheless at the end of the 
home and away season Drtipper finished top of the 914 tippers that started the year. We 
dropped to third after the finals, but this is probably due to end play by the competitors 
who choose unrealistic probabilities at the end of the competition to maximize their 
chance of reaching the top. Outperforming humans in estimating probabilities suggests 
the predicted odds can be used to exploit betting markets.  

Betting for profit depends on getting value – betting on teams for which the price paid 
by the bookmaker is better than justified by the true probability of the team winning. 
The overlay is the expected profit you would make on an individual bet if the computer 
estimate of the probability is correct. It is obtained by multiplying the computer’s 
estimate of winning by the dividend or price. Thus a 23% chance of winning a bet 
paying $5 (4 to 1) gives 23% x $5 = $1.15 for a 15% overlay. Now of course the 
computer is not always correct, so it is usual to leave a margin for error. Betting on 
small overlays results in lots of bets at what should be reasonable odds; large overlays 
results in fewer bets at better odds.  

Kelly (1956) optimises the percentage growth rate in your pool, with the proportion of 
pool bet depending on the overlay and chance of winning. Because your bet grows with 
the size of the pool, the Kelly system is extremely volatile, and carries a large risk that 
your pool will disappear. To reduce this risk, many punters prefer to use a half Kelly, 
one third Kelly or some other fraction, or else calculate the percentage of a constant 
pool (I call this constant Kelly). Kelly also assumes that you know the result of one bet 
before another is placed. In AFL betting we may have to bet on several matches 
simultaneously. It is difficult to replicate testing of Kelly systems, as the final total 
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depends on the order of the bets. Again, proportions based on a constant pool eliminate 
this.  

Various analyses performed in the past have suggested it is possible to exploit market 
inefficiencies using the computer predictions. In 2001, research student Jonathan Lowe 
obtained the past odds on each team winning and simulated various betting strategies 
based on the computer’s tips for 3 years from 1998-mid 2001. These showed a 
substantial profit for some strategies. Yelas (2003) also analysed several years data. An 
analysis by one of Ozmium’s AFL subscribers Anderson (2002) showed certain Kelly 
based betting strategies produced profits for 2002. Because of the problems with betting 
order, we could not replicate his calculations. Our own analysis for 2002 used four 
simple strategies – Full Kelly, Half Kelly, Kelly on a fixed bank of $100, and a constant 
bet of $20. Each strategy was evaluated for betting on any match showing an overlay 
greater than 0, 2%, 4%, …20%. In general the full Kelly made losses, and the other 
three made gains. All the systems showed the bank less than the starting point at some 
stage of the season. For all systems, overlays from 0 to 10% seemed the most 
consistently profitable. From this analysis it appeared the Kelly system on a fixed bank 
produced the most consistent results of these three strategies in 2002, with the initial 
bank of $100 accumulating to at least $245 for all overlays of 10% or less.  

The computer’s performance in 2004 is analysed in more detail in Clarke and Clarke 
(2004). Bookmaker’s odds were collected for each round. These were generally those 
offered by TAB Sportsbet as published each Monday in The Herald Sun, and 
globalsportsbet odds as published each Friday. There were odd occasions when odds 
were not available and others from the Web were used. Betting $10 early in the week on 
the computer’s predicted winner for each match would have resulted in 185 bets, $1,850 
invested for winnings of $1803.20. This represents a return on investment (ROI) of 
-2.5%, or a loss of 2.5%. Note this is never recommended, but is still a good result 
given the bookies margin of about 8% for the TAB Sportsbet odds. Betting $10 on 
every team for which the computer predictions showed an overlay would have resulted 
in 116 bets, $1,160 invested for winnings of $1,331.80. This represents a ROI of 14.8%. 
Depending on overlay safety margins chosen, profits ranged from 22% to 58% betting 
Head to Head at Sportsbook odds as published in Monday’s Herald Sun, 19% to 28% 
betting Head to Head at Friday’s odds, and from 11% to 95% betting on margins at 
Friday’s odds. We give here a couple of relevant tables.  

Head to head betting 
Table 2 shows the number of bets, number of winning bets, amount bet, amount won, 
profit and return on investment for the strategy of betting a fixed amount of $10 on 
overlays of 0%,2%,4%,…20%. All show a positive return, with ROI generally 
increasing as the overlay increases. Note this is an increasing percentage of a smaller 
amount, as the number of bets decreases as the required overlay increases.  
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Table 2: Head to head betting early in the week with TAB Sportsbet 2004:  
Returns from a constant bet of $10 on all teams with given overlay 

Overlay Number  
of bets 

Number of 
winning bets 

Amount  
bet $ 

Amount  
won $ 

Profit 
$ ROI 

0% 116 80    1,160.00    1,331.80  171.80 14.8% 
2% 96 66       960.00    1,112.80  152.80 15.9% 
4% 87 59       870.00    1,006.20  136.20 15.7% 
6% 72 48       720.00       858.70  138.70 19.3% 
8% 52 40       520.00       727.20  207.20 39.8% 
10% 37 27       370.00       487.90  117.90 31.9% 
12% 26 21       260.00       398.70  138.70 53.3% 
14% 18 13       180.00       277.50  97.50 54.2% 
16% 13 10       130.00       220.50  90.50 69.6% 
18% 12 9       120.00       206.50  86.50 72.1% 
20% 10 7       100.00       173.50  73.50 73.5% 

 

While not recommended due to the volatility, Table 3 give the results of using a Kelly 
Percentage of a variable pool starting with $100. All overlays under 12% result in final 
pools over 10 times the original. While for 2004 there appears to be little downside, 
with the pool rarely going below the starting pool, this is not recommended as a long 
term strategy. It might be fun or exciting to try each year with a small discretionary 
starting pool, but might often result in losing all the starting pool.  

 

Table 3: Head to head betting early in the week with TAB Sportsbet 2004:  
Returns from betting the Kelly percentage of a variable pool with a $100 start 

Overlay Amount  
bet $ 

Amount 
won $ ROI Final Pool

$ 
Min Pool 

$ 
Max Pool

$ 
0%  14,790.74  16,764.12 13.3%  2,073.38  87.08  3,076.44 
2%  13,531.98  15,351.61 13.4%  1,919.63  87.08  2,884.76 
4%  12,241.38  13,906.79 13.6%  1,765.41  87.08  2,653.00 
6%  9,610.94  11,153.14 16.0%  1,642.20  87.08  2,467.86 
8%  12,926.32  15,401.69 19.1%  2,575.38  100.00  3,870.20 

10%  5,424.45  6,740.57 24.3%  1,416.12  100.00  2,128.11 
12%  3,772.33  4,736.18 25.6%  1,063.84  100.00  1,598.71 
14%  1,078.85  1,383.24 28.2%  404.39  100.00  607.71 
16%  914.86  1,268.08 38.6%  453.22  100.00  681.08 
18%  739.35  1,024.28 38.5%  384.93  100.00  578.46 
20%  454.20  623.69 37.3%  269.49  100.00  404.98 

 

Odds were also given in the Herald Sun on Friday from Globalsportsbet. These tended 
to have a lower bookmaker’s margin of about 4%, but would be expected to better 
approximate public opinion and allow for team selections. Table 4 showS the results 
using these odds.  
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Table 4: Head to head betting late in the week with Global Sportsbet:  
Returns from a constant bet of $10 on all teams with given overlay 

Overlay Number 
of bets 

Number of  
winning bets 

Amount 
bet $ 

Amount 
won $ 

Profit 
$ ROI 

0% 142 92     1,420.00    1,803.20 383.20 27.0% 
2% 118 72     1,180.00    1,445.40 265.40 22.5% 
4% 100 59     1,000.00    1,241.40 241.40 24.1% 
6% 87 52        870.00    1,120.90 250.90 28.8% 
8% 72 39        720.00       884.90 164.90 22.9% 

10% 65 35        650.00       827.30 177.30 27.3% 
12% 53 30        530.00       716.80 186.80 35.2% 
14% 40 23        400.00       587.60 187.60 46.9% 
16% 33 17        330.00       446.50 116.50 35.3% 
18% 32 16        320.00       427.00 107.00 33.4% 
20% 26 12        260.00       353.20 93.20 35.8% 

 

Because of the lower bookmaker’s margins, more bets are made using Friday’s odds. 
The returns on investment are generally higher for small overlays and lower for the 
higher overlays. An analysis of the individual bets would be needed to discover the 
process at work here, but clearly the market is still inefficient even after team selections.  

Margin Betting 
Since the computer selects margins relatively better than winners, one might expect 
betting on margins to be a better proposition than head to head. Lines, which allow 
betting at the margin for a return of $1.95, were given in the Herald Sun each Friday 
from Globalsportsbet. These have a low bookies margin of only 2.5%, and given the 
computer’s superiority in predicting margins should be a prime opportunity. The lines 
were obtained from The Herald Sun each Friday for each week except for round 3 and 
one match in Round 13. For these missing values, an approximate line based on the 
Monday TAB sportsbet odds was used.  

For line betting, the computer gives an expected margin, so either side of this margin 
would be expected to occur with 50% chance. A safety margin can be built in by 
requiring the line to differ from the computer’s prediction by at least a given figure. 
However betting on the line with no safety margin in 2004 would have resulted in 105 
winning bets out of 184, for a return on investment of 11.3%. Details for this and other 
safety margins are shown in Table 5. 
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Table 5: Results of fixed bet size $10 on the line at globalsportsbook $1.95 odds 

Safety 
margin 

Number 
of bets 

Number of 
winning bets

Amount 
bet $ 

Amount 
won $ 

Profit 
$ ROI 

0 184 105  1,840  2,048  208 11.3% 
1 163 95  1,630  1,853  223 13.7% 
2 148 89  1,480  1,736  256 17.3% 
4 120 77  1,200  1,502  302 25.1% 
6 92 60  920  1,170  250 27.2% 
8 72 48  720  936  216 30.0% 

10 53 35  530  683  153 28.8% 
12 41 27  410  527  117 28.4% 
14 30 20  300  390  90 30.0% 
16 19 12  190  234  44 23.2% 
18 13 10  130  195  65 50.0% 
20 11 8  110  156  46 41.8% 
22 9 6  90  117  27 30.0% 
25 3 3  30  59  29 95.0% 

 
While we have not analysed profits using Kelly type bet sizing for line betting, for those 
interested in dabbling in the full Kelly with an increasing pool, this sort of betting may 
have the advantage that all bets would have a greater than 50% chance of success. This 
should reduce the chance of a bank busting losing sequence.  

 

CONCLUSION 
There is a body of evidence that the computer performs better in the long run than the 
general newspaper expert in selecting winners and margins. While the occasional expert  
outperforms the computer in winners, none matches the accuracy of the computer’s 
margin. Evidence from several sources also suggests that it is possible to use the 
computer’s odds to develop profitable betting strategies. This suggests the computer’s 
predictions of a team’s chances are better than both the experts and the general public.  

The superiority of the computer over humans is surprising given the humans have much 
more supposedly relevant information than the computer (particular player personnel, 
training form, injuries, time from last match etc). This implies the humans are not 
processing that extra information correctly. Bailey and Clarke (2005) have shown that 
the computer can incorporate this extra information to further improve the computer’s 
predictions, particularly in the area of odds.  
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ABSTRACT 
 
A substantial amount of cricket training is done in 'nets' because they control the travel 
of the ball and make it possible to practice without spending a lot of time retrieving 
cricket balls.  Baseball also uses 'batting cages' for this purpose.  One key problem with 
batting in a net is the difficulty in working out if the shot selected would result in runs 
scored.  In motor learning terminology this is called Knowledge of Results (KR). Since 
the aim of batting is to score runs, nets have a low KR quotient and so low feedback 
into training. This research introduces SeeUPlay® using cameras mounted at a height of 
3.5 metres above the batter that tracks the cricket ball trajectory and speed as it is 
bowled and angle and acceleration as it is played to generate substantial information 
about the performance of the batter and the bowler. In this research, a State-based 
"Observation, Analysis and Prediction" (SOAP) target tracking algorithm is proposed. 
This algorithm is able to tracking objects with discontinuous trajectories and 
dynamically changing motion properties. The experiment results show that this system 
detects up to 93.5% of moving objects in noisy environment with a tracking accuracy of 
up to 97.42%. 
 
KEYWORDS 
 
computer vision, cricket, knowledge of results, tracking. 
 
INTRODUCTION 
 
Computer vision techniques are used in sport training applications for detecting and 
tracking trajectories of players (Needham, 2001) and balls (Ren et al., 2004; D'Orazio et 
al., 2002; Wedge et al., 2004). The captured information (e.g. trajectories) are recorded 
and analysed to support human coaches to improve the performance of players.  
 
For example, Kovacic and Pers have developed a computer vision based handball 
tracking application (Kovacic and Pers, 2000). In this system, two stationary cameras 
are mounted directly above the court so that all players can be observed. To segment 
players from the captured images, an image of an empty court (without players or balls) 
is modelled as the background, which contains static components of the observation 
only. The players are detected by differencing the background image and the latest 
image captured during the match because the latest image contains both static 
components and dynamic components (players and a ball). Both temporal and colour 
matching approaches are used to track players. The trajectories of players are recorded 
according to the tracking results. This data is used to analyse the performance of each 
player.  
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In addition, Wedge presented a football tracking system in (Wedge et al., 2004). In this 
system, the trajectory of a ball moving over a cluttered background is found in panning 
and zooming camera video sequences. The video sources used in this system were the 
digital broadcast videos of Australian Football League matches. In this system, two 
consecutive greyscale images are aligned and one is subtracted from the other to search 
for motion regions. These regions are usually triggered by the motion of a football. Its 
position will be treated as the start point of a trajectory and is feed into a Kalman filter 
(Welch and Bishop, 2004) to predict the location and appearance of this target in the 
succeeding frame.  
 
Although computer vision based computer aided sports training (CAST) systems are 
well researched, these systems usually expect the tracked targets have continuous 
trajectories with stable motion properties. In this paper, we propose a state based target 
tracking algorithm (the SOAP algorithm) that can track targets with discontinuous 
trajectories and dynamic changing motion properties. In addition, a cricket ball tracking 
system that implements this algorithm is introduced. This application is tested in both 
indoor and outdoor environments and shows good tracking results. 
 
TARGET TRACKING 
 
Relative Work 
Tracking is “the problem of generating an inference about the motion of an object given 
a sequence of images” (Lipton, 1998).   
 
The position of an object in the succeeding frame can be estimated as in the area that 
surrounds the object’s current position (Funk, 2003). Kovacic and Pers (2000) used this 
approach for tacking handball players. Although this approach is simple and fast in 
calculation speed, it has one significant drawback: low prediction accuracy. This 
problem is caused by ignoring the target’s motion properties. 
 
In contract to the above approach, some tracking algorithms estimate the appearance of 
the target by both its last observed location and its motion properties (such as velocity 
and acceleration). The prediction accuracy is improved because more information (e.g. 
the priori knowledge of the motion properties) is involved in the estimation. 
 
Kalman filter (Welch and Bishop, 2004) is a common algorithm to estimate the position 
of a moving object with the priori knowledge of its motion properties. It is a recursive 
mathematical algorithm that infers the variable of interest based on observed variables 
in the past (the measurement data) and prior knowledge of the system (Mayeck, 1979). 
Kalman filter contains two stages in each iteration step; they are the prediction stage and 
the measurement stage. The prediction stage, also referred to as the time update stage, is 
responsible for projecting forward in time the current state and error covariance 
estimators to obtain an estimate of the next time step. The measurement stage, on the 
other hand, incorporates a new measurement into the previous estimation (from the 
prediction stage) to obtain an improved posterior estimate (Welch and Bishop, 2004). In 
other words, the prediction stage predicts the target state in the next frame and the 
measurement stage corrects the estimation by observed information in the succeeding 
frame. 
 



 152

Although a Kalman filter improves the prediction accuracy of a tracking, it may fail 
when the target’s motion properties are changed dynamically. For example, when a 
Kalman filter is applied to sport applications, it may fail when the target is hit by a 
player since there is a discontinuity in the ball’s motion properties and the new 
trajectory is unable to be estimated.  
   
SOAP Algorithm 
We present a state based target tracking algorithm, the SOAP algorithm, to overcome 
the drawbacks of existing object tracking systems. Powered by a state based logic, the 
SOAP algorithm is able to robustly track objects with rapidly changing motion 
properties and discontinuous trajectories. 
 
As the SOAP algorithm relies on priori knowledge of the target object’s motion 
properties, we use an example of cricket ball tracking system to introduce this algorithm. 
This cricket ball tracking system is discussed in the “Application” section. 
 
SOAP algorithm is a state based target tracking algorithm. A finite state machine (FSM) 
is used in the SOAP algorithm to determine its behaviours. There are six states in the 
SOAP algorithm designed for tracking a cricket ball. The six states are: 
 

• S1: Inward cricket ball detection state. 
• S2: Inward cricket ball tracking state. 
• S3: Outward cricket ball detection state. 
• S4: Outward cricket ball tracking state. 
• S5: Idle state. 
• S6: Stop state. 

 
In addition to the six states, there are eleven input symbols in the cricket tracking SOAP 
algorithm. These input symbols are summarised in Table 1 and are illustrated in Figure 
1. The number of input symbols may different when apply the SOAP algorithm in other 
domains, for example football or tennis. 
 

Table 1: The cricket ball tracking SOAP algorithm has eleven input symbols. 

No. Symbol Comment 
1 [a] An inward cricket ball candidate is detected. 
2 [b] The inward cricket ball target is elected among candidates. 
3 [c] The inward cricket ball target is tracked for another frame. 
4 [d] The inward cricket ball target is merged into the batter’s influence area. 
5 [e] The target is close to image boundaries 
6 [f] An outward cricket ball candidate is detected. 
7 [g] The outward cricket ball target is elected among candidates. 
8 [h] The idle state timer set off. 
9 [i] The cricket ball target is not able to be found. 

10 [j] The SOAP algorithm is stopped 
11 [k] The SOAP algorithm is restarted 
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Figure 1: The state transition diagram of SOAP algorithm. 
State S1 is the initial state. State S5 is the acceptance state. 

 
As discussed above, the FSM forms the core framework of the SOAP algorithm. In each 
tracking state (S1 to S4), a trilogy of “Observation”, “Analysis” and “Prediction” is 
implemented to elect the cricket ball from its candidates and track the ball as long as it 
is moving and visible. The “Observation”, “Analysis” and “Prediction” steps are 
discussed below. 
 
Observation:  
The observation step achieves the following goals: 
 

1. Seek for the appearance of a cricket ball in the predicted areas. 
2. If the cricket ball is not found, the observation step will adjust image 

segmentation threshold value and notify the prediction step to redo the 
prediction (with looser constraints).  

3. If the cricket ball is still not found even after threshold value and prediction 
adjustments, the observation will abort the tracking process for this target. 

 
Analysis: 
The analysis step is to analyse the target’s trajectory information, which was collected 
by the “Observation” step. The analysis step has two main tasks: 
 

1. In both detection states (S1 and S3), the analysis step assigns a score for each 
observed candidate (objects that look like cricket balls). By thresholding the 
scores of all candidates, the real cricket ball target can be selected. Once the 
target has been chosen, the analysis step will change the SOAP algorithm to a 
tracking state (S2 or S4). 

2. Analyse the trajectory of a cricket ball target. If a target is going to merge into 
the batter’s influence area, it will report an inward trajectory captured event and 
change the state of the SOAP algorithm to the outward ball detection state (S3). 
Otherwise, if a target is going to fly out of image boarders, it will report an 
outward trajectory captured event and change the state of the SOAP algorithm to 
the idle state (S5). 
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Prediction: 
The goal of the prediction step is to estimate the target’s appearance in the successive 
frame based on the priori knowledge of its motion features. It completed the following 
tasks: 
 

1. In each cricket ball detection state (S1 or S3), the prediction step defines a 
searching area based on the priori knowledge of cricket ball’s motion properties 
(Figure 2 and 3). Any objects in this area will be detected by the observation 
step. 

2. In each cricket ball tracking state (S2 or S4), it estimates the appearance of a 
cricket ball object by its past motion features. An estimation error value (shown 
in Figure 4 with the radius of the yellow circle surround the estimated location) 
is also given as a tolerance to the prediction error. This tolerance error value 
may be adjusted if the observation step requires it. 

 

 
 

Figure 2: The predefined searching area in the inward cricket 
ball detection state (S1). 

 

 
Figure 3: The predefined searching area in the outward cricket 

ball detection state (S3). 
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Figure 4: The tolerance estimation error.  

 
As shown in the figure, the first circle (the internal one) indicates the initial tolerance 
error value. The two larger circles indicate the adjusted tolerance values. 
 
APPLICATION 
 
By utilising the SOAP algorithm discussed above, a cricket ball tracking application, 
SeeUPlay® Cricket, has been developed. It captures the cricket balls’ trajectories with a 
camera mounted at a height of 3.5 meters above the batter. The SeeUPlay® Cricket 
application also analyses the trajectories information and calculates the cricket ball’s 
bowling and pitching speed and the direction of cricket balls. 
 
The user interface (UI) of the SeeUPlay® Cricket application is shown in Figure 5. As 
illustrated, the UI of this application contains three main parts:  
 

• The wagon wheel (WW) part is located at the left half of the window. The 
wagon wheels are plotted in this area. The direction and length of a wagon 
wheel is related to the ball’s tracked trajectory. Different balls are plotted in 
different colours. The red colour wagon wheel always represents the latest ball. 

 
• The live video is rendered at the right top part of the window. This video image 

is updated at approximately 30 frames in a second. The ball’s bowling 
information is also displayed on top of the live video image. For example, the 
length (the bounce position of an inward cricket ball) is indicated as a yellow dot 
on the image. 

 
• The text based information part is displayed at the bottom right of the UI 

window. This text based information includes: total overs, current overs and 
balls, total runs, runs per over and average bowling speed. The latest bowling 
speed is shown in the blue round button on the top of the middle column 
between the wagon wheel and the live video window. 
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Figure 5: The Graphical User Interface (GUI) of the 
SeeUPlay® Cricket application. 

 
Apart from the three main components of the UI, some control buttons are located at the 
bottom of the middle column. These buttons are: live play button, replay button and 
stop button.  
 
The SeeUPlay® Cricket application is designed for two purposes. Firstly, for 
professional players, this application provides real time training support. As a 
substantial amount of cricket training is done in ‘nets’, which are used to control the 
travel of the ball and make it possible to practice without spending a lot of time 
retrieving cricket balls from around a field. One key problem with batting in a net is the 
difficulty in working out if the shot selected would result in runs scored.  In motor 
learning terminology this is called Knowledge of Results (KR). This problem is solved 
by the SeeUPlay® Cricket system because it is able to calculate the cricket ball’s 
trajectory parameters in real time and provide live feedbacks. 
 
Secondly, the SeeUPlay® Cricket application will encourage young people to both be 
outside playing cricket, and also inside in front of a computer. With the current child 
obesity and fitness concerns being blamed on television and computer games, this 
application will provide an ideal model for future play: a compromise between the 
indoor and the outdoor, between what is “cool” for young people, and what is good for 
their health. 
 
 
EXPERIMENTS 
 
Two experiments have been done to evaluate the detection rate and tracking accuracy of 
the SeeUPlay® Cricket application. These experiments are done in both indoor 
environments (Figure 3) and outdoor environments (Figure 4).  
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Target Detection Test: 
The target detection test is to evaluate the percentage of cricket balls that can be 
detected. In this test, the successful detection rates are calculated for both inward and 
outward targets. Manual observation is involved in this test to classify successful 
detections and failed detections.  
 
Table 2 illustrates the results obtained from the target detection test. In this table, the 
numbers of balls that have been observed by the human observer are listed in the “Balls 
Observed” column. The “Total detected” column lists the number of balls that the test 
system has detected. The “False Negatives” column lists the number of balls observed 
by human subjects but ignored by the test system. The “False Positives” column lists the 
number of detected balls that are actually caused by camera noise or moving objects 
other than a cricket ball.  
 

Table 2: The result of target detection experiment 

Environment 
Balls 

Observed Total detected Correct
False 

Positives 
False 

Negatives 
Indoor 62 62 58 4 4 

Outdoor 56 55 51 4 5 
Total 118 117 109 8 9 

 
In the indoor environment, 93.5% of the cricket balls (58 out of 62) were detected by 
the SeeUPlay® Cricket system successfully. The rest of balls (6.5 percent) are missed. 
Apart from the total of 58 balls, the test system also reports four appearances of cricket 
balls. However, these four balls cannot be confirmed by the human subject. These four 
balls are classified as false positive cases. Thus the rate of false positives in an indoor 
environment is 6.5%.  
 
In an outdoor environment, 91.1% of balls have been detected successfully. Besides the 
missed balls, another four ghost balls (false positives) have been classified by the 
human subject. The false positive rate is 7.3%. 
 
Tracking Accuracy Test: 
The tracking accuracy test is carried out to evaluate the accuracy of the SeeUPlay® 
Cricket application. The accuracy of the tracking results is defined as the distance 
between two positions: the position that the tracking system localized and the position 
that is localized by a human subject. The tracking error is defined as the distances 
between the manually specified position and the position tracked by the test system. The 
manual measurements may introduce positioning error as well. However, the errors 
introduced by human factor are ignored in this experiment. 
 
The tracking accuracy test has been done with 86 tracked trajectories (in both indoor 
environment and outdoor environment). The accuracy of 620 balls observations along 
the 86 tracked trajectories has been calculated. 
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Table 3 illustrates the statistical results in this experiment. The mean distance error in 
this experiment is 1.37 pixels and 97.42% of tracking errors are less than or equal to 
three pixels in distance.  

Table 3: The results of tracking accuracy test. 

Function name Subjects Sample Size Results 
mean distance 620 1.37 pixel 
max distance 620 15.52 pixels 

standard deviation distance 620 1.09 
 
 
CONCLUSION AND FUTURE WORK 
 
In this paper, we present the SOAP algorithm that utilises a FSM framework to solve 
the trajectory discontinuity problem. Since the ball’s trajectory in sports usually 
contains discontinuous segments as a consequence of external forces (e.g. player bats a 
ball), the SOAP algorithm is especially useful in tracking balls in sports. 
 
A cricket ball tracking application, SeeUPlay® Cricket, is also presented in this paper. 
This system implements the SOAP algorithm to track cricket balls and plots their 
trajectories as wagon wheels. This system also analyses cricket balls’ trajectories to 
provide KR information for users to benefit both professional and domestic users.  
 
A set of experiments have been done over the SeeUPlay® Cricket application in both 
indoor and outdoor environments. Up to 93.5% of cricket balls have been tracked 
successfully and up to 97.42% of the tracked balls are accurate.  
 
In the future, this research could be improved in two directions. Firstly, as the 
framework of the SOAP algorithm, a FSM, has to be established manually with priori 
knowledge of the target’s motion properties, future research can be done to create a 
method to establish FSM automatically. Secondly, the cricket ball tracking application 
analyses a ball’s trajectory to plot its speed, direction and bounce location. Other 
trajectory parameters, such as spin angle and acceleration can also be calculated through 
the ball’s tracking results. Future research can be done to develop other analysis 
techniques over the ball’s tracked trajectory to provide more useful descriptions of a 
ball for coaches and players.  
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Millions of dollars are wagered on the outcome of one day international (ODI) cricket 
matches, with a large percentage of bets occurring after the game has commenced. Using 
match information gathered from all 2200 ODI matches played prior to January 2005, a 
range of variables that could independently explain statistically significant proportions of 
variation associated with the predicted run totals and match outcomes were created. Such 
variables include home ground advantage, past performances, match experience, 
performance at the specific venue, performance against the specific opposition, experience 
at the specific venue and current form. Using a multiple linear regression model, prediction 
variables were numerically weighted according to statistical significance and used to 
predict the match outcome. With the use of the Duckworth-Lewis method to determine 
resources remaining, at the end of each completed over, the predicted run total of the 
batting team could be updated to provide a more accurate prediction of the match outcome. 
By applying this prediction approach to a holdout sample of matches, the efficiency of the 
“in the run” wagering market could be assessed. Preliminary results suggest that the market 
is prone to overreact to events occurring throughout the course of the match, thus creating 
brief inefficiencies in the wagering market. 
 
KEY WORDS 

linear regression, live prediction, market efficiency, BetFair  
 
INTRODUCTION 

The first official one day international (ODI) match was played in 1971 between Australia 
and England at the Melbourne Cricket Ground. Whilst ODI cricket has developed over the 
past 35 years (2300 matches), the general principles have remained the same. Both sides bat 
once for a limited time (maximum 50 overs) with the aim in the first innings to score as 
many runs as possible, and in the second innings to score more than the target set in the 
first innings.  The high scoring nature of ODI matches ensures that team totals and 
differences between scores can be well approximated by a normal distribution. As shown 
by (Bailey, 2005), this facilitates the use of multiple linear regression to predict a margin of 
victory (MOV) prior to the commencement of the match. Using a similar approach, a 
multiple linear regression is also used to predict the number of runs scored by the team 
batting first. With the use of (Duckworth and Lewis, 1999) approach of converting 
resources available into runs, as each over is bowled, the current total and the predicted 
total for the remaining overs are combined to produce an updated predicted total for the 
batting team. The difference between the pre-match predicted total and the updated 
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predicted total provides a measure of how the batting team is performing through the course 
of their inning. This difference is then used to provide an updated prediction for the MOV. 
 

METHOD 

In ODI cricket the aim of the team batting first is to score as many runs as possible in the 
allotted time (usually 50 six ball overs). If the first team scores more runs than the second 
team, the MOV can readily be expressed in terms of runs difference between the two teams. 
The aim of the side batting second is to score more runs than the first team. Because the 
game is deemed to be finished if the team batting second achieves their target, the MOV is 
usually expressed in terms of resources (wickets and balls) remaining, rather than runs. In 
order to develop a predictive process for match outcomes, a consistent measure of the 
MOV is required.  This can be achieved by following the work of Duckworth and Lewis to 
convert resources available into runs. 
 

Table 1: Percentage of resources available for overs remaining and wickets lost 
Wickets lost Overs 

remaining 0 1 2 3 4 5 6 7 8 9 
50 100.0 93.4 85.1 74.9 62.7 49.0 34.9 22.0 11.9 4.7 
40 89.3 84.2 77.8 69.6 59.5 47.6 34.6 22.0 11.9 4.7 
30 75.1 71.8 67.3 61.6 54.1 44.7 33.6 21.8 11.9 4.7 
25 66.5 63.9 60.5 56.0 50 42.2 32.6 21.6 11.9 4.7 
20 56.6 54.8 52.4 49.1 44.6 38.6 30.8 21.2 11.9 4.7 
15 45.2 44.1 42.6 40.5 37.6 33.5 27.8 20.2 11.8 4.7 
10 32.1 31.6 30.8 29.8 28.3 26.1 22.8 17.9 11.4 4.7 
5 17.2 17.0 16.8 16.5 16.1 15.4 14.3 12.5 9.4 4.6 
1 3.6 3.6 3.6 3.6 3.6 3.5 3.5 3.4 3.2 2.5 

 
Frank Duckworth and Tony Lewis invented a now well-known system for resetting targets 
in ODI matches that were shortened due to rain. Although this system has undergone 
several refinements in recent years, the general way in which the Duckworth-Lewis (D-L) 
method is calculated has not changed, with wickets and balls remaining expressed as 
resources available and converted to runs. Table 1 shows an abbreviated version of the 
remained resources (R) for wickets lost and balls remaining. A complete tables and detailed 
account of the derivation of this table is given by Duckworth and Lewis (1999). 
 
Whilst the D-L approach was specifically designed to improve ‘fairness’ in interrupted one-
day matches,  (de Silva et al., 2001) found that when used to quantify the MOV, the D-L 
approach sometimes overestimated the available resources when the second team to bat 
won easily, and underestimated the available resources when the second team to bat only 
just won.  By minimizing the Cramer-von Mises statistic for the differences between actual 
and predicted runs, de Silva derived a formula to reduce bias by modifying the remaining 
resources. This is given by 
 

Rmod = (1.183 – 0.006R)R                (1) 



 162

 
where Rmod = modified resources and R=resources given using D-L (see Table 1). 
  
When an ODI match is won by the team batting first, the MOV is readily determined by the 
difference in runs scored. When the match is won by the team batting second, the MOV can 
be found by multiplying the first innings run total by the corresponding modified 
percentage of resources remaining as given by (1). By referencing the MOV so that a 
‘home’ win has a positive value and an ‘away’ win has a negative value, it can be seen 
from Figure 1, that the underlying distribution for MOV can be well approximated by a 
Normal distribution.  
 
 
 

 

 
 

 

 

Figure 1: Histogram of MOV referenced against the home team 

 
Statistical Analysis 
All analysis was performed using SAS version 8.2.1 Multiple linear regression models were 
constructed using a stepwise selection procedure and validated a backward elimination 
procedure. To increase the robustness of the prediction models a reduced level of statistical 
significance was incorporated with all variables achieving a level of significance below 
p=0.005. Comparisons between continuously normally distributed variables were made 
using student t-tests. 
 
 
Prediction models for MOV 
Using match and player information from 1800 ODIs played prior to Jan 2002, (Bailey, 
2005) combined measures of recent form, experience, overall quality and home ground 
                                                 
1 SAS Institute Inc., Cary, NC, USA 
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advantage (HA), to produce a prediction model that was successfully used to identify 
inefficiencies the betting market for ODI matches. Using 2200 matches played prior to 
January 2005 an updated version of this model was created and compared to the original. 
 
Prediction variables of experience, quality and form were derived by developing separate 
measures for both teams and then subtracting the away team values from the home team 
values. This effectively references the final result in term of the home team.   Indicator 
variables were created to identify matches played at a neutral venue and matches where the 
two competing teams were clearly from different class structures (established nation versus 
developing nation). 
  
From Table 2 it can be seen that the results of ODI matches are becoming more predictable, 
with the updated model explaining 3.5% more of the variation in ODI outcomes (R-square: 
23.4% vs. 19.6% p<0.0001).  
 

Table 2: Multivariate models for MOV constructed with 1800 & 2200 ODI matches. 
Bailey model (n=1800) Updated Model (n=2200)  

Variable Estimate P-value Partial 
R2 

Estimate P-value Partial 
R2 

Intercept / HA 13.4±1.9 <0.0001  13.9±1.8 <0.0001  
Average Ever 0.6±0.1 <0.0001 17.3% 0.6±0.06 <0.0001 20.7% 
Class* -29.6±6.7 <0.0001 1.2% -25.1±5.9 <0.0001 1.0% 
Experience 0.2±0.1 0.002 0.4% 0.2±0.07   0.0003 0.4% 
Ave. last 10 0.1±0.04 0.003 0.4% 0.2±0.04 <0.0001 0.7% 
Neutral 
Venue 

-8.6±3.2 0.007 0.3% -8.2±3.2    0.005 0.3% 

Total R2 19.6%  23.1% 
* When a developing cricket nation played host to an established cricket nation 

 
Because the MOV in the regression model is nominally structured in favour of the home 
team, the intercept term in the regression equation reflects HA. It can be seen from Table 2 
that HA is equivalent to about 14 runs and is highly statistically significant (p<0.0001).  
Because one third of all ODI have been played at neutral venues, a binomial indicator 
variable was created to negate the HA for these games. As the regression process requires a 
‘Home’ and ‘Away’ team, when playing at neutral venue, the team with the most 
experience at the venue was assigned to be the ‘Home’ team. If all matches played at 
neutral venues were devoid of HA then the binomial variable for a neutral venue would be 
the exact negative of the intercept term. This was not the quite the case, with the neutral 
variable equivalent to about eight runs, suggesting a HA in neutral matches equivalent to 
about six runs.  This six run difference could be thought of as a surrogate marker for the 
difference in familiarity between the competing teams.  
  
The difference in quality, as measured by the difference in averages between the two teams 
for all past matches, was by far the strongest predictor, explaining 20.7% of the variation in 
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the updated model. The best measure of current form was the difference in averages for the 
past 10 matches, whilst the difference in overall experience (games played) between the 
home and away team was also statistically significant. Whilst no statistically significant 
difference could be found in parameter estimates, the difference in class declined (29.6 runs 
vs. 25.1 runs) as developing nations gain more experience. Similarly, the effect of HA rose 
slightly (13.4 runs vs. 13.9 runs) with more data, while the effect of a neutral venue was 
slightly lower (8.6 runs vs. 8.2 runs). Not surprisingly, all variables in the model achieved a 
higher level of statistical significant when additional data was used.  

Prediction model for team totals 
From Figure 2 it be clearly seen that the total of the team batting first can be well 
approximated by a normal distribution (mean=229.7±1.2). When the score of the team 
batting first was shortened due to rain, (about 13% of matches), the DL method was once 
again incorporated to determine a projected total. 
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Figure 2. Histogram of first inning scores 

  
Using past averages and exponential smoothing, prediction variables relating to past 
performance were created. Using a multiple linear regression, a six variable model was 
constructed.   
 

Table 3: Multivariate model predicting the total of the team batting first 
Variable Estimate P-value Partial R2 

Ave. MOV against opposition 0.13±0.04 <0.0001 9.7% 
Exp. Smooth past totals 1st inning batting  team 0.25±0.04 <0.0001 3.6% 
Ave. total conceded in 1st inning by bowling team 0.53±0.06 <0.0001 2.6% 
Home Country 15.3±2.3 <0.0001 1.6% 
Ave. MOV ever 0.31±0.05 <0.0001 1.1% 
Exp. Smooth past totals 1st inning at venue -8.6±3.2 0.0004 0.5% 
Total R2 19.1 % 



 165

 
Interestingly, when using a stepwise selection procedure, the strongest predictor of the total 
scored by the team batting first was in fact the average of the past MOV between the two 
teams.  The next strongest predictors in the model were derived from the past first innings 
scores achieved by the batting team as well as scores conceded by the bowling team. HA 
was the next predictor of importance, with a team playing in it home country scoring an 
additional 15 runs. A second surrogate marker for the quality of the batting team was given 
by the average past MOV for the batting team. The final variable that was found to be 
highly statistically significant (p=0.0004) was derived from all past first innings played at 
the venue. This helped account for pitch conditions and venue size.  
  
Whilst over 23% of the variation in MOV could be explained by the multivariate model, the 
total of the team batting first was not as predictable, with an R-square statistic of 19.1%. 
  
Using a holdout sample of 100 completed matches played in the year 2005, the regression 
model successfully predicted the winning team 71% of the time and had and Absolute 
Average Error (AAE) between the predicted and actual margin of 55.8±4.1 runs. These 
results compare favourably against the original prediction model of (Bailey, 2005), who 
accurately identified the winning team 69.6% of the time, and had an AAE of 54.6±0.9 runs 
for a sample of 336 matches played between 2002 and 2004. 
 
Using the same holdout sample of 100 matches, the AAE for the difference between the 
predicted and actual totals of the team batting first was 42.5±3.2 runs. By referencing the 
MOV in terms of the team batting first rather than the home team, a predicted total for the 
team batting second can be given by  

 
Predicted Total2 = (Predicted Total1) + (Predicted MOVordered)                         (2) 

 
From the chosen holdout sample of 100 matches, the AAE for the difference between the 
predicted and actual totals of the team batting second was 47.1±4.0 runs.  
 
RESULTS 

With the use of the D-L method to convert available resources into runs, at the completion 
of each over, an updated total for the team batting first is calculated by combining the 
actual total with the predicted total for the remainder of the innings. 
 

Updated Total = (existing score) + (projected total for remaining resources)      (3) 
 

Using complete over by over information for the 100 match holdout sample, it can be seen 
from Figure 3 that the accuracy with which the total of the batting team can be predicted, 
progressively improves throughout the course of the innings, with first innings totals 
significantly more accurate that those of the second innings. 
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Figure 3: AAE for difference between predicted and actual total 

 
By subtracting the pre-match predicted total from the updated prediction of the total, a 
performance indicator can be derived for whether each batting team is performing above or 
below expectation. 
 

  Performance indicator = (updated total) – (pre-match predicted total)                      (4) 
 
With the use the performance indicator, an updated prediction for the MOV can then be 
readily obtained 

 
Updated MOV = (Pre-match MOV) + (Performance indicators)                          (5) 
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Figure 4: AAE for the difference between the predicted and actual MOV 

 
From Figure 4 it can be seen that during the course of the first innings, the AAE for the 
difference between the predicted and actual MOV reduces by about 10 runs. In the second 
innings the reduction in AAE is much greater as the game draws nearer to its conclusion.  
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As shown by (Bailey, 2005), by dividing the predicted MOV by its standard error and 
comparing with a standard Normal distribution, the approximate probability that either side 
will win the match can be readily calculated. 
 
Example 
On December 7 2005, Australia played New Zealand in a day/night match at Westpac 
Stadium in Wellington. After winning the toss and electing to bat Australia proceeded to 
score a very respectable total of 322. The betting exchange Betfair fielded a betting market 
for this match, with just over $1,000,000 AUD of matched bets occurring before the start of 
the game. As betting on this match remains open for the duration of the game, by the 
completion of the Australian innings, just over $4,000,000 AUD of matched bets had been 
placed. Figure 5 shows both the volume of bets placed and the price matched. From Figure 
5 it can be seen that the opening price for Australia was about $1.38, with the price 
dropping to $1.30 after Australia won the toss. After losing 3 early wickets, the price 
drifted out to $1.70, but as Australia rallied, the price continued to drop and by the 
completion on the 50th over, the best price available for Australia to win was $1.08. 
 

 
Figure 5: Betfair volume and price for Australia vs. New Zealand ODI 2302  

(pre match until end over 50). 
 
Using prediction models for the team total and MOV, the predicted probability for 
Australia to win was calculated both before and during the match, and compared with the 
market price offered by Betfair2. Where the predicted probability can be seen to exceed the 
market probability, the ‘in play’ market can be thought to be inefficient. From Figure 6 it 
can be seen that while Australia was batting, the predicted probability for Australia to win 
was consistently below the market probability, with only one inefficiency occurring 
throughout the course of the Australian innings. 
 

                                                 
2 Market probabilities included 5% for commission   
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Figure 6: Predicted probability and market price for Australia to win against New Zealand  

ODI 2302 (pre match until end over 50) 
 
Chasing 323 runs to win the match, New Zealand started slowly.  With some big hitting 
towards the end of the innings, the black caps clawed their way into contention and started 
the final over as favourites, only requiring six runs to win. Unfortunately, two wickets 
falling in the final over gave victory to Australia by 2 runs. Figure 7 shows that several 
inefficiencies were present in the betting market with the predicted probability of success 
often exceeding the market price. By the completion of the 100th over, more than 
$9,000,000 AUD had been wagered on the outcome of the match. 
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Figure 7: Predicted probability and market price for Australia to win against New Zealand  

ODI 2302 while New Zealand batted (overs 51-100) 
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DISCUSSION 
In July 2005 the International Cricket Council (ICC) announced a new set of rules to be 
applicable to ODI matches. An increase in fielding restrictions and the introduction of a 
substitute player (super-sub), significantly increased the total achieved by the team batting 
first by more than 20 runs. (252.7±8.0 vs. 229.7±1.2 p=0.002).  As these changes occurred 
within the holdout sample of the data used, it is unsure how these modifications would 
impact upon the prediction process. 
 
Whilst the price and volume of bets traded are available through Betfair (see Figure 5), this 
information is not time coded by over, ensuring that if the efficiency of the market is to be 
accurately determined, information must be gather manually at the completion of each over. 
This would undoubtedly prove time consuming should a definitive appraisal of the market 
inefficiency be required. 
 
In Australia, federal laws prevent Australian citizens from placing bets over the internet 
after a sporting event has commenced. Paradoxically, Australian citizen can place bets ‘in 
the run’ provided the bets are placed over the phone. This inconvenience causes a greater 
delay between observing an inefficient price and actually placing a bet. 
 
CONCLUSION 

Multiple linear regression provides a useful way to assign the winning probabilities to the 
competing teams in ODI matches. With the use of D-L approach, this process can be 
readily modified to produce ‘in the run’ predictions. Whilst a definitive analysis of the 
efficiency of the betting market is yet to be conducted, preliminary evidence suggest 
punters may be prone to over or under estimate the true probability of the competing teams 
as the game progresses. 
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ABSTRACT 
 
In tennis the tiebreak game is used if the games-score reaches six games all. As its name 
implies, it is used to 'break-the-tie'.  It is not uncommon for the luckier rather than the better 
player to win the tiebreak game. Indeed, some people think that it seems a little unfair when 
it happens that the player who has played the better tennis overall up to six games all, loses 
the tiebreak game (and the set!). In many tournaments using computers with data recorded 
after each point, it would be a simple matter to use a countback rule based on all of the 
information in the set up to six games all, in order to 'break-the-tie'. It would also be simple 
even if only manual records of the score were kept by the umpire. Several countback 
methods are considered in this paper. They are compared with the tiebreak game for their 
effectiveness at 'breaking-the-tie', and the best countback method identified. The notion of 
auxiliary (or parallel) scoring systems is also developed. These auxiliary scoring systems 
make use of only part of the total information up to six games all, and can be easily used in 
practice when there is no umpire keeping (at least) a written record of the score. A few 
auxiliary scoring systems are considered and the most effective is identified. 
 
KEY WORDS 
 
countback methods in tennis, effectiveness of the tiebreak game 
 
INTRODUCTION 
 
In a tiebreak set of tennis singles, the two players alternately play service games until one 
player wins 6-0, 6-1, 6-2, 6-3, 6-4 or 7-5, or until the score reaches 6-6, when the tiebreak 
game is played to determine the winner. For the situation in which 6-6 has been reached, as 
many as (say) 70 points would typically have been played, so there is considerable 
information available on each player at that stage. This information could be used in an 
attempt to determine who should win. By comparison, the tiebreak game (when played) has 
relatively limited information in it as it lasts on average only about 12 points. For this 
reason, it is not uncommon for the luckier player rather than the better player to win the 
tiebreak game. 
 
The question arises as to whether the use of a countback method at 6-6 is more (or less) 
likely to correctly identify the better player. Also, which countback method is ‘best’? These 
are the purposes of this study. Indeed, if a countback method turned out to be more 
effective than the tiebreak game at correctly identifying the better player, it would seem a 
little unusual to play an additional 12 points on average in order to achieve an outcome 
which was worse (at least probabilistically or ‘in the long run’) than one that could be 
achieved by playing no points at all. 
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It would seem that there are two main reasons for playing a tiebreak game. One is to 
provide entertainment for the spectators (it is seen by many spectators as exciting, although 
often it is seen as a lottery by the players), and the other is to determine the winner. In a 
large number of matches, there are no spectators at all. For example, many non-professional 
matches, local competition matches and social matches have no spectators most of the time. 
In such cases it would appear that the sole purpose of playing the tiebreak game is to 
determine the winner. 
 
In this paper we consider 13 individual countback methods, and see how they perform 
relative to each other. These countback methods are: 
 
C1: The proportion of points won on service by each player (maximum) 
C2: The total number of points won in the set by each player (maximum) 
C3: The total number of points won as receiver (maximum) 
C4: The total number of points played as server (minimum) 
C5: The total number of points won as server (minimum) 
C6: The total number of break points played as receiver (maximum) 
C7: The number of games with break points as receiver (maximum) 
C8: The number of times 30-30 or deuce points are played as receiver (maximum) 
C9: The number of games with 30-30 or deuce as receiver (maximum) 
C10: The number of deuce points played as receiver (maximum) 
C11: The number of games with deuce point(s) as receiver (maximum) 
C12: The number of games won to love or 15 as server (maximum), and 
C13: The number of games won to love, 15 or 30 as server (maximum). 
 
The proportion of points won as receiver by each player was also initially considered as a 
countback method, but the authors quickly realised that this method is equivalent to method 
C1 above. It is noted that criteria C4 and C5 are measures of how easily a player wins 
his/her serve, and so a minimum value is selected as the indicator of the better player. Two 
general methods of combining the best few countback methods are then considered, with a 
view to producing an improved composite method and seeing whether it is really much 
better than simpler ones. 
 
In many professional matches (even some with a small number of spectators) the result of 
every point is entered into a computer, whereas in many matches at the ‘local’ level there is 
either an umpire who keeps a manual record of the match, or alternatively the players 
themselves keep a (verbal) record of the score. These three scenarios of umpiring lead to 
three different amounts of information being available for countback purposes at 6-6. It is 
clear that more sophisticated countback methods are possible when ‘total’ information is 
available on a computer which can be used to process that information at the press of a 
button. (And the winner is…!). This is not to say that manual methods and methods based 
on the players keeping their own records may not work reasonably well. 
 
Records that are not kept at present but are simple enough that they can be kept by the 
players themselves as the match proceeds have been termed ‘auxiliary scoring systems’. 
These scoring systems can be used if needed for countback purposes at 6-6. Auxiliary 
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scoring systems may not be as good as computer-based countback methods, but might still 
be quite reasonable. This is investigated in the study. 
 
METHODS 
 
In most tennis matches the probability of winning a point is greater when serving than it is 
when receiving. For many singles matches this probability or p-value is close to 0.6, and 
for many doubles matches it is close to 0.7. 
 
Tennis matches have been categorized into various groups (Pollard and Noble, 2004). For 
example, ‘Group 60’ has p-values near 0.6 and includes ‘stronger professional women and 
average professional men on slower to average surfaces’. It would also include many 
average to higher level ‘weekend’ matches. ‘Group 65’ has p-values near 0.65 and includes 
‘stronger professional men on average to fast surfaces, and men’s doubles on slow to 
average surfaces’. ‘Group 70’ has p-values near 0.70 and includes ‘strong-serving 
professional men on fast grass surfaces, and men’s doubles on average to fast surfaces’. 
This study focuses on ‘Group 60’, ‘Group 65’ and ‘Group 70’ matches. 
 
Firstly we consider ‘Group 60’ matches with (pa,pb) = (0.6+0.04,0.6-0.04) = (0.64,0.56) 
where player A is the better player and has a probability of 0.64 of winning a point on 
service, and player B has a probability of 0.56 of winning a point on service. Many sets of 
tennis were simulated with (pa,pb) = (0.64,0.56) until 1,000,000 sets in which 6-6 had been 
reached, were obtained. (Samples of 1,000,000 typically give statistics that are accurate to 3 
significant digits. Further, using a sample size that is a power of 10 leads to easy 
interpretation of the tables). For each of these sets in which 6-6 had been reached, various 
countback methods were applied to see whether the set would be allocated to player A or 
player B. For example, using countback method 2 (see row 2 of Table 1) in which the set is 
awarded to the player who won the greater number of points, player A was awarded the set 
on countback 532,907 times, player B was awarded the set on countback 319,124 times, 
and there was a draw on 147,969 occasions. The results for 12 other countback methods are 
also given in Table 1. It can be seen that the countback methods with the highest ratios of 
the number of times the set was awarded to A divided by the number of times it was 
awarded to player B were the four methods C1, C2, C3 and C12. 
 
It can be seen that C12 has the highest ratio (1.716) of these four methods, but it has the 
disadvantage of having the highest number of draws (248,544). Also, C1 has the least 
number of draws (22,379), but it also has the second lowest ratio (1.636). Focusing on just 
these four criteria C1, C2, C3 and C12, consideration was given as to whether combinations 
of these criteria might perform better than any one of them by itself, and two broad 
methods of combining them were considered. 
 
Firstly, one criterion is applied and the set awarded to player A or player B, or if a draw 
resulted using that criterion, a second criterion is applied and the set awarded to player A or 
player B, or if a draw resulted using that criterion, a third criterion is applied,…. For 
example, this sequential application of different countback criteria is denoted by 
C1>C3>C12>C2 when the sequential order is C1, C3, C12 and finally C2. 
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Table 1:  Countback Results for (pa,pb) = (0.64,0.56) for individual countback criteria (cf. 

Frequency for the tiebreak game = 627,456) 

 A wins B wins Draws, D Ratio(A/B) Freq(A+D/2)
C1 606,806 370,815 22,379 1.636 617,995.5 
C2 532,907 319,124 147,969 1.670 606,891.5 
C3 568,193 352,798 79,009 1.611 607,697.5 
C4 569,009 383,446 47,545 1.484 592,781.5 
C5 509,289 381,543 109,168 1.335 563,873 
C6 484,512 357,632 157,856 1.355 563,440 
C7 381,728 259,022 359,250 1.474 561,353 
C8 535,729 369,672 94,599 1.449 583,028.5 
C9 462,408 313,452 224,140 1.475 574,478 
C10 512,728 361,326 125,946 1.419 575,701 
C11 442,776 302,643 254,581 1.463 570,066.5 
C12 474,792 276,664 248,544 1.716 599,064 
C13 429,028 277,319 293,653 1.547 575,854.5 
 
Secondly we considered combinations of criterion in the following way. Considering (say) 
the three criteria Cx, Cy and Cz, a counter, SUM, is initially set to zero, +1 is added to 
SUM if player A is awarded the match under Cx, -1 is added to SUM if player B is awarded 
the match under Cx, and 0 is added if Cx indicated a draw; +1 is added to SUM if Cy 
indicated A, -1 is added if Cy indicated B, and 0 if Cy indicated draw;  identically for Cz. 
Finally, if SUM is greater than zero the set is awarded to player A, and if it is less than zero 
it is awarded to player B, and if it is zero, we have a draw. This composite criterion is 
denoted by C(x,y,z). 
 
The results of various combinations of C1, C2, C3 and C12 are given in Table 2. The last 
column in this table is obtained by adding half the number of draws to the number of ‘A 
wins’. Thus, this column represents the number of times player A would win (on average) 
if draws were allocated at random to each player. This is a useful column for comparing the 
various countback methods, and for comparing them with the tiebreak game. It can be seen 
that when C1 was used in sequence with C2, C3 or C12, it was always better to start the 
sequence with C1. Note that C12 resolved quite a lot of draws after C1 had been applied in 
the first instance. Typically, all of the non-sequential combinations C(x,y), C(x,y,z) and 
C(1,2,3,12) produced too many draws, as might have been expected. There was one 
exception however. Surprisingly, the combination C(1,2,3) performed better than the 
criterion C1, although not by much. (A simulation of 10,000,000 scores at 6-6 was carried 
out to verify that this observation was not just a random or chance occurrence). These 
observations suggested starting with C(1,2,3) as the first criterion, and considering only 
sequencing from then on. The results for the best two composite criterion along these lines, 
C(1,2,3)>C3>C12 and C(1,2,3)>C12>C3 are given in Table 2, and it can be seen that they 
are virtually identical in performance. Thus, for ‘Group 60’ players, either of these 
complex, composite countback systems seems to be about as good as is possible. Thus, in 
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the situation in which the outcome of every point is entered into a computer, the use of 
either of these two countback rules would be quite feasible. 

Table 2:  Countback Results for (pa,pb) = (0.64,0.56) for individual and more complex 
countback criteria (cf. Frequency for the tiebreak game = 627,456) 

 A wins B wins Draws, D Ratio(A/B) Freq(A+D/2)
C1>C2 608,637 372,611 18,752 1.633 618,013 
C2>C1 604,709 376,539 18,752 1.606 614,085 
C1>C3 610,019 373,705 16,276 1.632 618,157 
C3>C1 603,566 380,158 16,276 1.588 611,704 
C1>C12 612,582 376,293 11,125 1.628 618,144.5 
C12>C1 608,375 380,500 11,125 1.599 613,937.5 
C1 606,806 370,815 22,379 1.636 617,995.5 
C(1,2,3) 607,324 370,587 22,089 1.639 618,368.5 
C(1,2,3)>C3>C12 614,236 377,172 8,592 1.629 618,532 
C(1,2,3)>C12>C3 614,222 377,186 8,592 1.628 618,518 
C12>C11 569,201 358,489 72,310 1.588 605,356 
C11>C12 553,017 374,673 72,310 1.476 589,172 
C12 474,792 276,664 248,544 1.716 599,064 
C11 442,776 302,643 254,581 1.463 570,066.5 
 
The above two countback rules are not of any use when a computer is not available. A 
‘best’ sequential combination of C2, C3 and C12 could easily be determined, and could 
probably be managed by a competent and alert umpire using manual record keeping. It can 
be seen that C1, C2 and C3 are not suitable criteria for use by the players themselves, 
whereas C12 and C11, for example, are suitable. Thus, a sequential combination of C12 
and C11 (which had a moderate performance as a separate criterion) may be able to be 
handled by just the players themselves. (Recording/updating the relevant information at 
each change of ends would assist the players in this task.) The performances of the 
auxiliary scoring systems C11, C12, C11>C12 and C12>C11 are given in Table 2. Firstly, 
it is noted that C12 is better than C11 as an auxiliary scoring system, since C12 has the 
larger ratio and a smaller number of draws. Also, criteria C12>C11 is a better auxiliary 
scoring system than C11>C12 as it has a larger ratio. More generally, it is noted here that 
all of the conclusions in the above paragraphs for ‘Group 60’ matches also applied for this 
group of matches when the simulations were carried out with the smaller player differences 
pa-pb=0.04 and pa-pb=0.02. 
 
We now compare these various countback methods and auxiliary scoring systems with the 
use of the tiebreak game at 6-6. The probability that the tiebreak game correctly identifies 
the better player when pa=0.64 and pb=0.56 is 0.627456 (an exact result obtained by 
forward recurrence methods), and so one would expect player A to win on 627,456 
occasions out of 1,000,000 sets in which the tiebreak game was played. Thus, it can be seen 
that, when pa and pb are ‘near 0.6’, the countback methods are not as good as the tiebreak 
game at identifying the better player, but they are perhaps somewhat better than one might 
have expected. The performances of the ‘better-performing’ countback, composite-
countback and auxiliary scoring systems identified above are now investigated for ‘Group 
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70’ matches. Table 3 is a replica of the lower part of Table 2 for the case in which pa=0.74 
and pb=0.66. Given that the probability player A wins a tiebreak game is now 0.638188 
when pa=0.74 and pb=0.66, it can be seen from Table 3 that, for ‘Group 70’ matches, all of 
these countback methods except C11 work better than actually playing the tiebreak game! 
Even some of the auxiliary scoring systems work better at identifying the better player. As 
above, these conclusions also applied for ‘Group 70’ matches when the simulations were 
carried out with the smaller player differences given above. 
 

Table 3:  Countback Results for (pa,pb) = (0.74,0.66) for individual and more complex 
countback criteria (cf. Frequency for the tiebreak game = 638,188) 

 A wins  B wins Draws, D Ratio(A/B) Freq(A+D/2)
C1 673,872 298,027 28,101 2.261 687,922.5 
C(1,2,3) 673,875 298,027 28,098 2.261 687,924 
C(1,2,3)>C3>C12 681,404 305,735 12,861 2.229 687,834.5 
C(1,2,3)>C12>C3 681,436 305,703 12,861 2.229 687,866.5 
C12>C11 630,895 291,444 77,661 2.165 669,725.5 
C11>C12 619,658 302,681 77,661 2.047 658,488.5 
C12 550,928 234,332 214,740 2.351 658,298 
C11 480,805 226,457 292,738 2.123 627,174 
 
Table 4 gives the corresponding results for the ‘Group 65’ matches for the case in which 
pa=0.69 and pb=0.61. The relevant probability for player A winning a tiebreak game is now 
0.631622, so it can be seen that the various countback systems and even the auxiliary 
scoring system, C12>C11, perform better than the tiebreak game for ‘Group 65’ matches. 
These results also applied for the smaller differences. 
 
 

Table 4:  Countback Results for (pa,pb) = (0.69,0.61) for individual and more complex 
countback criteria (cf. Frequency for the tiebreak game = 631,622) 

 A wins B wins Draws, D Ratio(A/B) Freq(A+D/2)
C1 641,214 335,745 23,041 1.91 652,734.5 
C(1,2,3) 641,310 335,744 22,946 1.91 652,783 
C(1,2,3)>C3>C12 647,711 342,230 10,059 1.893 652,740.5 
C(1,2,3)>C12>C3 647,734 342,207 10,059 1.893 652,763.5 
C12>C11 601,648 325,847 72,505 1.846 637,900.5 
C11>C12 588,639 338,856 72,505 1.737 624,891.5 
C12 514,362 257,982 227,656 1.994 628,190 
C11 467,736 265,492 266,772 1.762 601,122 
 
The point at which the best composite countback method is about equal to the tiebreak 
method is when pa and pb averaged about 0.616. Below this value the tiebreak game 
performs increasingly well relative to the various countback methods, until it performs at its 
best relatively when we reach ‘Group 50’ matches. As an example of this best relative 
scenario, when pa=0.54 and pb=0.46, the probability player A wins the tiebreak game is 
0.624390 whilst the total frequency (corresponding to those in Tables 2, 3 and 4) is only 
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574,954 for C(1,2,3)>C12>C3 and 539,772 for the auxiliary scoring system C12>C11. It is 
noted here that we explored the notion of extending the definition of a draw for the basic 
criteria (for example, extending the draw definition for C2 as a point difference between the 
players of -1, 0, +1 rather than a difference of 0) with the view to increasing the ratio for 
each criterion. The ratios (for these modified criterion C2, C3,…) certainly did increase, but 
so did, of course, the number of draws. There appeared to be no particular benefit in 
extending draws prior to combining or sequencing the (draw-modified) criteria into 
composite ones. This technique of extending the draws in order to achieve higher ratios 
could be revisited in other ways (maybe successfully) but this has not yet been investigated. 
 
RESULTS 
 
By simulating 1,000,000 sets that reached 6-6, a range of different countback procedures 
have been analysed to see which procedures are the best. For matches in which pa and pb 
average 0.6 or more, several countback methods work quite well. Indeed, provided this 
average is about 0.62 or more, the best computer-based countback method is more likely to 
correctly identify the better player than is a tiebreak game. Countback methods do not work 
so well when the average of pa and pb falls below 0.6. For example, for the worst case 
when pa and pb average only 0.5, the tiebreak game was shown to be quite a bit more 
effective than countback methods. Some simple quite easy-to-manage countback methods, 
called auxiliary scoring systems are only marginally worse than the best countback systems 
for the situations in which one would consider using a countback approach. 
 
DISCUSSION 
 
The approach taken in this paper is to consider using a countback method for all matches, 
or to not use it at all and to use the tiebreak game as at present. An alternative approach to 
this could be taken. This approach involves using a countback method some of the time 
(namely when one player has a sufficient lead on the countback criterion), and to play the 
tiebreak game the remainder of the time. This approach would involve awarding the set to 
the player with a ‘large enough’ lead on the countback criterion, and to play the tiebreak 
game if the lead is not ‘large enough’. The amount required for a ‘large enough’ lead could 
be determined so that the relevant ratio is no less than that of the tiebreak game. Thus, for 
any tennis match, we would have a dynamic structure in which the probability of the better 
player winning would be at least as large as what it is for the tiebreak game. It is noted that 
this approach could be used for any countback method. Another way of looking at this is 
that the tiebreak game should always be played unless there is ‘large enough’ evidence to 
award the match to one of the players. This approach would appear to have considerable 
merit, and is presently being studied by the authors. 
 
There would appear to be several practical advantages in using a countback procedure: 
• For the situation in which two teams play simultaneously on two courts (and then swap 

around in some way), it is clear that the two courts are more likely to be better 
synchronized when tiebreak games are replaced by countbacks or draws. 
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• Matches in general will clearly have more predictable durations (smaller variance of 
duration) if tiebreak games are replaced by countback or draw (Pollard & Noble, 2003). 

• It is noted that, under the present scoring system, players sometimes ‘throw away’ a 
point or two in certain circumstances. For example, players who are down 40-0 against 
strong servers have been observed to do this. This practice is not attractive for the 
spectators, and it is clear that in a countback situation it is likely to cease. 

 
CONCLUSIONS 
 
Countback methods at 6-6 in a set of tennis can be more effective at correctly identifying 
the better player than is the playing of a tiebreak game. This is particularly so when serving 
is a strong advantage in a match, and this occurs in many doubles and in many men’s 
singles situations. Some countback methods work better than others, and not surprisingly 
the more complex ones work a little better. These complex methods require the recording 
of every point played up to 6-6, and sometimes a computer to work out the actual winner. 
Simpler countback methods, called auxiliary scoring systems, although not as good as the 
more complex ones, nevertheless perform quite well in the situations where they might be 
considered. It would appear that spectators like the excitement of a tiebreak game, even 
though the players themselves realize that the tiebreak game is a bit of a lottery, and that the 
better player quite often loses. Thus, it would seem that the most relevant occasions on 
which a countback might be used are when there are no spectators. This is probably most of 
the time for tennis played at the local level. The simplest auxiliary system is ‘the number of 
service games won to 15 or better’, possibly used in conjunction with ‘the number of games 
in which a player reaches deuce on their opponent’s serve’. These two auxiliary systems are 
actually reasonably effective compared with the most complex ones. The best complex 
countback system found makes use of four measures: the proportion of points won on 
service by each player, the total number of points won by each player, the total number of 
points won by each player when receiving, and the number of games won to 15 or better by 
each player on their service. This complex system is described in Section 2. 
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ABSTRACT 
 
Many tennis models that occur in the literature assume the probability of winning a 
point on service is constant. We show this assumption is invalid by forecasting 
outcomes of tennis matches played at the 2003 Australian Open. A revised model is 
formulated to better reflect the data. The revised model improves predictions overall, 
particularly for the length of matches and can be used for index betting. Suggestions on 
further improvements to the predictions are discussed. 
 
KEY WORDS 
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 INTRODUCTION 
 
Many tennis models that occur in the literature assume the probability of winning a 
point on service is constant (Barnett and Clarke 2002, Carter and Crews 1974, Fischer 
1980, Schutz 1970). On the other hand, there are works in the literature to show that the 
assumption of players winning points on serve being i.i.d. does not hold.  Jackson 
(1993) and Jackson and Mosurski (1997) show that psychological momentum does exist 
in tennis, and set up a “success-breeds-success” model for sets in a match, and find that 
this model provides a much better fit to the data, compared to an independence of sets 
model. Klaassen and Magnus (2001) test whether points in tennis are i.i.d. They show 
that winning the previous point has a positive effect on winning the current point, and at 
important points it is more difficult for the server to win the point than at less important 
points. 
 
In this paper, an i.i.d. Markov Chain model is used to predict outcomes of tennis 
matches. The predictions indicate that the i.i.d. assumption may not hold since there are 
fewer games and sets actually played than predicted. A revised Markov chain model is 
then formulated for sets in a match that allows for players that are ahead on sets, to 
increase their probability of winning the set, compared to their probabilities of winning 
the first set. This is then followed by a revised model for points in a match that has an 
additive effect on the probability of the server winning a point. The revised models 
better reflect the data and the latter model is most useful for predicting lengths of 
matches, as demonstrated through index betting. 
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MARKOV CHAIN MODEL 
 
 Modelling a game 
 
A Markov chain model of a game for two players, A and B, is set up where the state of 
the game is the current point score (a, b), where both a ≥ 0 and b ≥ 0. With a constant 
probability p the state changes from (a, b) to (a + 1, b) and with probability 1 - p it 
changes from (a, b) to (a, b + 1). Therefore the probability P(a, b) that player A wins the 
game when the point score is (a, b), is given by: 

 
P(a, b) = p P(a + 1, b) + (1 - p) P(a, b + 1) 
 
where p is the probability of player A winning a point. 
 
The boundary values are P(a, b) = 1 if a = 4, b ≤ 2,  

P(a, b) = 0 if b = 4, a ≤ 2,            P(3, 3) = p
2

p
2

+ (1 − p)
2 . 

 
Similarly, the mean number of points M(a, b) remaining in the game at point score      
(a, b) is given by 
 
M(a, b) = 1 + p M(a + 1, b) + (1 - p) M(a, b + 1) 
 
The boundary values are M(a, b) = 0 if b = 4, a ≤ 2 or a = 4 b ≤ 2,  

M(3, 3) = 2

p
2

+ (1 − p)
2 . 

 
Let N(a, b|g, h) be the probability of reaching a point score (a, b) in a game from point 
score (g, h) for player A. The forward recurrence formulas are 
 
N(a, b|g, h) = N(a - 1, b|g, h), for a = 4, 0 ≤ b ≤ 2 or b = 0, 0 ≤ a ≤ 4, 
N(a, b|g, h) = (1 - p) N(a, b - 1|g, h), for b = 4, 0 ≤ a ≤ 2 or a = 0, 0 ≤ b ≤ 4, 
N(a, b|g, h) = p N(a-1 , b|g, h) + (1 -  p) N(a, b - 1|g, h) for 1 ≤ a ≤ 3, 1 ≤ b ≤ 3. 
 
The boundary values are  N(a, b|g, h) = 1 if a = g and b = h. 
 
Modelling a set 
Let PA

gsT (c, d) { PA
gs(c, d)} and PB

gsT (c, d) { PB
gs(c, d)} represent the conditional 

probabilities of player A winning a tiebreaker {advantage} set from game score (c, d) 
for player A or player B serving respectively.  The formulas below are for player A 
serving.  Similar formulas apply for when player B is serving. 
 
For a tiebreaker set  
PA

gsT (c, d) = pA
g  PB

gsT  (c + 1, d) + (1 - pA
g ) PB

gsT  (c, d + 1) 
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The boundary values are PA
gsT (c, d) = 1 if c = 6, 0 ≤  d ≤ 4 or c = 7, d = 5,  

            PA
gsT (c, d) = 1 if d = 6, 0 ≤  c ≤ 4 or c = 5, d = 7, PA

gsT (6, 6) = pA
gT  

where pA
g and pB

g  represents the probability of player A and B winning a game on serve 
respectively and pA

gT represents the probability of player A winning a tiebreaker game. 
 
For an advantage set      PA

gs(c, d) = pA
g  PB

gs (c + 1, d) + (1 - pA
g ) PB

gs(c, d + 1) 
 
The boundary values are PA

gs(c, d) = 1 if c = 6, 0 ≤  d ≤ 4, 

PA
gs(c, d) = 0 if d = 6, 0 ≤  c ≤ 4,         PA

gs(5, 5) = pA
g

(1 − pB
g

)

pA
g

(1 − pB
g

) + (1 − pA
g

) pB
g  

 
Recurrence formulas can be obtained for the mean number of games remaining in sets 
and the probability of reaching score lines in sets. 
 
Table 1: Percentage of matches correctly predicted at the 2003 Australian Open 

Round Percentage 
correct(%)

No. of 
matches 

1 78.1 64 
2 62.5 32 
3 68.8 16 
4 75.0 8 
5 75.0 4 
6 50.0 2 
7 100.0 1 

Total 72.4 127 
 
Modelling a match 
 
Let Psm (e, f) represent the conditional probabilities of player A winning an advantage 
match from set score (e, f). 
 
The recurrence formula is represented by 
Psm (e, f) = p

sT Psm (e + 1, f) + (1 - p
sT  ) Psm (e, f + 1) 

 
The boundary values are 
 Psm (e, f) = 1 if e = 3, f ≤ 2, Psm (e, f) = 0 if f = 3, e ≤ 2, Psm (2, 2) = ps 
 
where p

sT  represents the probability of player A winning a tiebreaker set, and ps 
represents the probability of player A winning an advantage set. 
 
Recurrence formulas can be obtained for the mean number of sets remaining in a match 
and the probability of reaching score lines in matches. 
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 MATCH PREDICTIONS 
 
2003 Australian Open Men’s predictions 
When two players, A and B, meet in a tournament, forecasting methods (Barnett and 
Clarke 2005) are used to obtain estimates for the probability of each player winning a 
point on serve. These two parameters (each player winning a point on serve) are then 
used as input probabilities in the Markov Chain model to obtain match outcomes. We 
will compare the accuracy of the predictions to the actual outcomes for the 2003 men’s 
Australian Open. 
 
For a match between two players, the player who has greater than a 50% chance of 
winning was the predicted winner. Table 1 represents the percentage of matches 
correctly predicted for each round and shows that overall 72.4% of the matches were 
correctly predicted. Based on the ATP tour rankings only 68.0% were correctly 
predicted. 
 
If pi represents the probability for the predicted player for the ith match, then the 
proportion of matches (P) correctly predicted and the variance (V ) of the proportion 
can be calculated by 

P = 
pii∑

n
 

V = 
pi q

ii∑

n2
 

where qi = 1 - pi and n = total number of matches played in the tournament. 
 
Applying these equations gives values of P = 0.753 and V = 0.0013. The 95% 
confidence interval is represented by  
(0.753 – 1.96 0.0013 , 0.753 + 1.96 0.0013 ) = (0.682, 0.824)  
which includes the value of 0.724. 
 
Out of 127 scheduled matches for the 2003 Australian Open men’s singles, only 118 
were completed.  For the other 9 matches, players had to withdraw prior to the match or 
retire injured during the match.  Therefore, only the 118 completed matches were used 
for predicting the number of games and sets played.  Table 2 gives the results.  Overall, 
there were 487.7 fewer games played than predicted.  This equates to 487.7/118 = 4.13 
fewer games per match.  Also, there were more 3 set matches played than predicted and 
fewer 5 set matches. This gives some indication that the i.i.d. model may need to be 
revised. 

 
Table 2: Predicted and actual number of games and sets played 
at the 2003 Australian Open men’s singles 

 Games 
played 

3 sets 4 sets 5 sets 

Prediction 4737.7 41.1 42.7 34.2 
Actual 4250.0 50.0 42.0 26.0 

 
 



 182

Using the model for gambling 
For head-to-head betting we will place a bet only when there is a positive overlay as 
represented by: 

 
Overlay = [Our Probability ×  Bookmakers Price] - 1 

 
A method developed by Kelly, discussed in Haigh (1999), calculates the proportion of 
bankroll you should bet depending on your probability and the bookmaker’s price and is 
represented below: 

Proportion of bankroll to gamble = Overlay

Bookma ker s Pr ice − 1
 

 
For example: Suppose player A was paying $2.20 to win, and player B was paying 
$1.65 to win. Suppose we predicted player B to win with probability 0.743.  In this 
situation we would bet on  B as given by a positive overlay [0.743 * 1.65] - 1 = 0.226 

Proportion of bankroll to gamble = 0.226

1.65 − 1
 =  0.348 

 
Figure 1 represents how we would have performed by adopting a constant Kelly system 
(fixed bankroll) of $100 for the head-to-head matches played at the 2003 Australian 
Open. It can be observed that we would have suffered a $195 loss by our 72nd bet but 
still ended up with a $45 profit. This recovery came from round 3 (bet number 75) 
onwards, where at that point we were down $147. By updating the parameters after each 
round by simple exponential smoothing some important factors such as court surface, 
playing at a particular tournament, playing in a grand slam event and recent form would 
be included in the predictions. 
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Figure 1: Profit obtained from betting on head-to-head matches played at the 2003 
Australian Open 
 
Jackson (1994) outlines the operation of index betting with some examples in tennis 
through binomial type models.  The outcome of interest X is a random variable and for 
our situation is the number of games played in a tennis match.  The betting firm offers 
an interval (a, b), known as the spread.  The punter may choose to buy X at unit stake y, 
in which case he receives y (X - b) if X > b or sell X at unit stake z, in which case 
receives z (a - X) if X < a.   
We will place a bet only when our predicted number of games is greater than b or less 
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than a. For example if an index is (35, 37), we would sell if our prediction is less than 
35 games or buy if our prediction is greater than 37 games. We will use a very simple 
betting system, and that is to trade 10 units each time the outcome is favourable. Figure 
2 represents how we would have gone by using our allocated betting strategy, for a 
profit of $435. This was as high as $480 but as low as -$220.  We also made $420 from 
one match alone being the El Aynaoui versus Roddick match where a total of 83 games 
were played. Without including this match we would have still made a profit of $60.  
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Figure 2: Profit obtained from index betting on matches played at the 2003 Australian 
Open 
 
Unlike head-to-head betting, there does not appear to be any advantage by betting from 
later rounds.  We can generate a profit from the start of the tournament.  Perhaps the 
bookmakers are not as proficient in estimating the number of games played in a match 
as they are with the probabilities of winning the match.  The bookmakers are always 
trying to balance their books where possible so that they gain a proportion of the 
amount gambled each match regardless of the outcome.  This implies that the general 
public are unable to predict the number of games played in a match as well as 
probabilities of players winning. Figure 3 represents the results by subtracting an 
additional 4.13 games per match from our predictions. This gave a profit of $285, 
despite the fact that no money was bet on the El Aynaoui versus Roddick match, which 
made a $420 profit previously. 
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Figure 3: Profit obtained from index betting on matches played at the 2003 Australian 
Open by subtracting 4.13 games per match from our predictions 
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 REVISED MARKOV CHAIN MODEL 
 
Probabilities of reaching score lines within an advantage match 
Suppose that a player is ahead on sets, then they can increase their probability of 
winning a set by α . The forward recursion formulas become 
 
N sm (e, f|k, l) = p

sT  N sm (e - 1, f|k, l), for (e, f) = (1, 0) 
N sm (e, f|k, l) = (1 - p

sT ) N sm (e, f - 1|k, l), for (e, f) = (0, 1) 
N sm (e, f|k, l) = ps N sm (e - 1, f|k, l), for (e, f) = (3, 2) 
N sm (e, f|k, l) = (1 - ps) N sm (e, f - 1|k, l), for (e, f) = (2, 3) 
N sm (e, f|k, l) = ( p

sT  + α) N sm (e - 1, f|k, l), for (e, f) = (3, 0), (2, 0) and (3, 1) 
N sm (e, f|k, l) = (1 - p

sT  + α) N sm (e, f - 1|k, l), for (e, f) = (0, 3), (0, 2) and (1, 3) 
N sm (e, f|k, l) = ( p

sT  - α) N sm (e - 1, f|k, l) + (1 - p
sT ) N sm  (e, f - 1|k, l), for (e, f) = (1, 2) 

N sm (e, f|k, l) = p
sT  N sm (e - 1, f|k, l) + (1 - p

sT  - α) N sm  (e, f - 1|k, l), for (e, f) = (2, 1) 
N sm (e, f|k, l) = ( p

sT  -α) N sm (e-1, f|k, l)+(1- p
sT  -α) N sm (e, f -1|k, l), for (e, f) = (1, 1) and 

(2, 2) 
where 0 ≤ p

sT  + α  ≤ 1 and 0 ≤ ps + α  ≤ 1. 
 
The boundary values are N sm (e, f|k, l) = 1 if e = k and f = l. 
 
Table 3: Distribution of the number of sets in an advantage match when α  = 0 and  0.06 

 α  = 0 α  = 0.06 
pA pB p

sT  3 sets 4 sets 5 sets 3 sets 4 sets 5 sets 
0.60 0.60 0.50 0.25 0.38 0.38 0.31 0.38 0.30 
0.61 0.60 0.53 0.25 0.37 0.37 0.32 0.38 0.30 
0.62 0.60 0.57 0.26 0.37 0.36 0.33 0.38 0.29 
0.63 0.60 0.60 0.28 0.37 0.35 0.35 0.38 0.28 
0.64 0.60 0.63 0.30 0.37 0.32 0.37 0.37 0.26 
0.65 0.60 0.66 0.33 0.37 0.30 0.40 0.37 0.23 
0.66 0.60 0.69 0.36 0.37 0.27 0.43 0.36 0.21 
0.67 0.60 0.72 0.40 0.36 0.24 0.47 0.34 0.19 
0.68 0.60 0.75 0.43 0.35 0.21 0.51 0.33 0.16 
0.69 0.60 0.77 0.47 0.34 0.19 0.55 0.31 0.14 
0.70 0.60 0.79 0.51 0.33 0.16 0.60 0.29 0.11 

 
Table 3 represents the probabilities of playing 3, 4 and 5 set matches when α  = 0 and 
0.06, for different values of pA and pB. The probability of playing 3 sets is greater when 
α  = 0.06 compared to α  = 0, for all pA and pB. The probability of playing 5 sets is 
greater when α  = 0 compared to α  = 0.06, for all pA and pB. 
 
From our forecasting predictions, it was noticed that on average the proportion of 3 set 
matches played are about 7% more than the model predicted and the proportion of 5 set 
matches are about 7% less than the model predicted, based on the assumption that the 
probability of players winning a point on serve are i.i.d.  Notice from Table 3, the 
probability of playing 4 sets is about the same for both values of α = 0 and 0.06, and the 



 185

differences in probabilities for playing 3 sets is about 0.07 greater when α = 0.06 
compared to α = 0, if p

sT ≤ 0.75. This is the reason α = 0.06 was chosen for the revised 
model. 
 
 
Conditional probabilities of winning a match 
The recurrence formulas are represented by: 
 
Psm (e, f) = p

sT  Psm (e + 1, f) + (1 - p
sT ) Psm (e, f + 1), for e = f 

Psm (e, f) = ( p
sT  + α) Psm (e + 1, f) + (1 - p

sT  - α) Psm (e, f + 1), for e > f 
Psm (e, f) = ( p

sT  - α) Psm (e + 1, f) + (1 - p
sT  + α) Psm (e, f + 1), for e < f 

 
The boundary values are Psm (e, f) = 1 if e = 3, f ≤ 2, Psm (e, f) = 0 if f = 3, e ≤  2, 
 Psm (2, 2) = ps. 
 
When α  = 0, the formulas reflect the Markov chain model presented earlier.  
 
Table 4 represents the probabilities of player A winning an advantage match for α = 0 
and 0.06, for different values of pA and pB. It can be observed that the probabilities 
remain essentially unaffected for all values of pA and pB by comparing the probabilities 
of winning the match when α  = 0 to α  = 0.06. 
 
Table 4: Probabilities of player A winning an advantage match when α  = 0 and  0.06 

pA pB p
sT  ps pm : α  = 0 pm : α  = 0.06 

0.60 0.60 0.50 0.50 0.500 0.500 
0.61 0.60 0.53 0.54 0.565 0.564 
0.62 0.60 0.57 0.57 0.627 0.627 
0.63 0.60 0.60 0.61 0.686 0.685 
0.64 0.60 0.63 0.64 0.740 0.739 
0.65 0.60 0.66 0.67 0.789 0.787 
0.66 0.60 0.69 0.71 0.831 0.829 
0.67 0.60 0.72 0.74 0.867 0.865 
0.68 0.60 0.75 0.76 0.897 0.895 
0.69 0.60 0.77 0.79 0.921 0.920 
0.70 0.60 0.79 0.81 0.941 0.939 

 
Mean number of sets remaining in a match 
The recurrence formulas are represented by 
 
M sm (e, f) = 1 + p

sT M sm (e + 1, f) + (1 - p
sT ) M sm (e, f + 1), for e = f 

M sm (e, f) = 1 + ( p
sT  + α) M sm (e + 1, f) + (1 - p

sT  - α) M sm (e, f + 1), for e > f 
M sm (e, f) = 1 + ( p

sT  - α) M sm (e + 1, f) + (1 - p
sT  + α) M sm (e, f + 1), for e < f 

 
The boundary values are M sm (e, f) = 0 if e = 3, f ≤ 2 or f = 3, e ≤ 2, M sm (2, 2) = 1. 
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Table 5 represents the mean number of sets played in an advantage match M sm  for  
α  = 0 and 0.06, for different values of pA and pB. The mean number of sets played when 
α  = 0.06 is less than that when α  = 0 for all pA and pB. 
 
Table 5: Mean number of sets played in an advantage match when α  = 0 and 0.06 

pA pB p
sT  M sm :α  = 0 M sm :α = 0.06 

0.60 0.60 0.50 4.13 3.99 
0.61 0.60 0.53 4.12 3.98 
0.62 0.60 0.57 4.10 3.96 
0.63 0.60 0.60 4.06 3.93 
0.64 0.60 0.63 4.02 3.89 
0.65 0.60 0.66 3.97 3.83 
0.66 0.60 0.69 3.91 3.78 
0.67 0.60 0.72 3.85 3.71 
0.68 0.60 0.75 3.78 3.65 
0.69 0.60 0.77 3.71 3.58 
0.69 0.60 0.79 3.65 3.52 

 
Mean number of games in a tiebreaker match 
Note at the outset that a tiebreaker match was chosen to simplify the analysis. The 
number of games in a tiebreaker set is 13 at most, and the number of sets is 5 at most. 
However we are faced with the problem of relating the momentum for winning a set to 
the momentum for winning a game, or even winning a point. 
 
In simple approach to dealing with this problem is to assume the momentum factor m 
has a linear form: 
 

m = cp kp + cg kg + cs ks 
where cp, cg, cs are coefficients for terms of points, games and sets respectively, and 
kp, kg, ks are the leads on the scoreboard in terms of points, games and sets respectively. 
 
We can make further simplifying assumptions for the coefficients cp, cg, cs, such that  
cs = 6 cg and cg = 4 cp. The factors 6 and 4 come from the stopping rules for sets and 
games respectively. Putting cp = c > 0 we then have 

 
m = c (kp + 4 kg + 24 ks) 

where -3 ≤ kp ≤ 3 in a standard game, -6 ≤ kp ≤ 6 in a tiebreaker game, -5 ≤ kg ≤ 5 in a 
set, and -2 ≤ ks ≤ 2 in a 5-set match. Combining all these inequalities we find that: -71c 
≤ m ≤ 71c. 
 
Now if we model momentum as an additive effect on the probability of the server 
winning a point we require p’ = p + m, where 0 < p + m < 1. This puts theoretical limits 
on the values of c that can be assumed.  It is possible to avoid such difficulties by 
following Jackson and Mosurski (1997) and express the momentum effect of leading on 
the scoreboard in terms of log odds 

ln( ′ p 

′ q 
) = m ln( p

q
) 
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This can be re-expressed as p’ = p

p + q e−m . It is easy to show that p < p’ < 1 if the 

player is ahead, and 0 < p’ < p if the player is behind.  Whilst this theory appears nicer it 
is of no practical consequence, as the transformation is very close to linear in the main 
area of interest. 
 
The linear model for the momentum factor enables us to calculate the probability of a 
player winning a point on serve in a tiebreaker game in a manner consistent with the 
probability of a point in a standard game. Furthermore wider consistency can be 
maintained with the probability of winning a game or a set. The model calculations can 
be carried out with each player having his own base probability of winning a point on 
serve, as well as his own individual momentum factor to allow for temperament or other 
personality factors. Table 6 represents the number of games played per match and the 
percentage of matches finishing in 3, 4 or 5 sets, for different values of c.  The results 
indicate, that under this momentum model, values of 0.0004 ≤ c ≤ 0.0007 give a better 
fit to the data, when compared to an independence model (c = 0). Nevertheless the 
linear model fails to fit the data on game difference and the pattern of sets 
simultaneously. 
 
Table 6: The number of games played per match and the percentage of matches 
finishing in different score lines 

 c games 3 set 4 set 5 set 
observed  36.0 42.4% 35.6% 22.0% 

0.0000 40.1 34.8% 36.2% 29.0% 
0.0004 37.9 43.0% 34.5% 22.5% 

predictions 

0.0007 36.2 50.5% 31.8% 17.7% 
 
 CONCLUSION 
 
Using an Markov chain model to predict outcomes of tennis matches, where the 
probability of each player winning a point on serve is i.i.d. overestimates the number of 
games and sets played in a match. Revised Markov chain models are then formulated to 
give a better fit to the data. Magnus and Klaassen (2001) have tested for independence 
of points from 4 years of Wimbledon point-by-point data. Further research for testing 
for independence, could involve analyzing Australian Open point-by-point data. This 
could involve finding a suitable momentum factor for individual players. In the current 
paper we set up a revised model with the focus of estimating the number of games 
played in a match. This model could also be used for estimating the number of points 
played in a match, by choosing suitable values for the coefficients. 
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ABSTRACT 
  
In a tennis match it is not uncommon for games to ‘go with service’ (ie 1-0, 1-1, 2-1, 2-2, 
3-2,...). When this occurs, the player who serves first is either ahead by one game, or the 
games’ score is equal. Some commentators, players,...argue that the person who serves first 
has a psychological advantage in that his/her opponent is very often ‘playing catch-up’. 
Assuming that such a (non-zero) psychological advantage of ‘being ahead in the games' 
score’ exists, the advantage of serving first in a set between two equal players, is 
determined. In the presence of such ‘front-runner’ psychological effects, alternative 
methods or rules for allocating service to the players are considered, and some are shown to 
be fairer than the present rule. A proposal consisting of two modifications to the present 
rules is put forward for consideration. One of these modifications is very easy to apply. 
  
The reverse psychological effect to the above, the ‘back-to-the-wall’ effect, occurs when a 
player performs better when behind. The proposal is seen to be fairer than the present 
method for the cases in which both player A has either a positive or negative psychological 
effect and player B also has an equivalent positive or negative effect. Further, the 
application of the proposal to doubles is also considered and a modification for doubles 
suggested for consideration. 
 
KEY WORDS 
 
rules in tennis, psychological advantage, back-to–the-wall effect in tennis, cricket fairness 
 
INTRODUCTION 
 
Many people believe that the person who serves first in a set of tennis has an advantage. 
This is because games often ‘go with service’, so that the first server is quite often ahead on 
the games’ score, giving that player a psychological advantage. In this paper the extent of 
this advantage is analysed, by considering two identical players. 
 
A fair scoring system has the characteristic that in a match between two equal players, each 
player has a probability of 0.5 of winning. A scoring system that does not have this 
characteristic is unfair. Several methods for attempting to overcome the advantage noted 
above, are considered in Section 2 of this paper, and two methods that reduce the advantage 
are proposed. Consideration is then given to the case of the reverse psychological effect, the 
‘back-to-the-wall’ effect. The performance of the two proposed methods is then analysed in 
the presence of both psychological effects. Finally, the case of doubles is analysed. With 
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four players on the court, there is scope for considering additional methods for overcoming 
the advantage of serving first. Minor changes to the above two methods are seen to apply. 
 
Earlier studies have considered the advantage gained by lifting play in certain 
circumstances (Morris, 1977; Pollard, 2002). There is however very little reported 
empirical evidence of psychological advantages in tennis. A ‘first game effect’ in a match, 
namely that fewer breaks occur in the first game of the match, has been identified (Magnus 
and Klaasen, 1999). More recently, in men’s singles grand slam tennis, the better player in 
a match has been shown to possess a ‘back-to-the-wall’ effect (Pollard, Cross and Meyer, 
2006). 
 
METHODS 
 
(a) Singles 
It is assumed that player A has a probability PA of winning a game on service when the 
games’ scores are equal (ie 0-0, 1-1, 2-2, …), that it is PA+D when he/she is ahead in the 
games’ score, and that it is PA-D when he/she is behind. Correspondingly, it is assumed 
that player B has a probability PB of winning a game on service when the games’ scores 
are equal, that it is PB+D when he/she is ahead in the games’ scores, and PB-D when 
behind. Thus, the psychological advantage of being ahead might be called the ‘front-
runner’ effect, and is represented by D. 
 
(b) A set of singles 
Firstly we consider a tiebreak set of tennis between two equal players (PA=PB) with equal 
psychological factors, D. For simplicity, it is assumed throughout this paper that the two 
equal players have an equal chance of winning the tiebreak game if it is played (at 6-6). 
Assuming player A serves in the first game of the set, the probability player A wins the set 
can be evaluated using a branching diagram or using recurrence methods. For example, 
when PA=PB=0.6 and D=0.1, the probability that the games’ score reaches 2-0, 1-1 and 0-2 
is (0.6)(0.5) = 0.30, (0.6)(0.5) + (0.4)(0.3) = 0.42 and (0.4)(0.7) = 0.28 respectively. 
Further, the probability the games’ score reaches 3-0, 2-1, 1-2 and 0-3 is (0.30)(0.7) = 
0.210, (0.30)(0.3) + (0.42)(0.6) = 0.342, (0.42)(0.4) + (0.28)(0.5) = 0.308 and (0.28)(0.5) = 
0.140 respectively. Continuing in this manner, and adding the probabilities that player A 
wins 6-0, 6-1, 6-2, 6-3, 6-4, 7-5 or 7-6, it follows that the probability player A wins a 
tiebreak set is equal to 0.5164 (see Table 1). 
 
(c) A match of the present best-of-three tiebreak sets 
We now consider a match of the best-of-three tiebreak sets between two such equal players. 
We note that if player A serves in the first game of a set and the set lasts an even number of 
games (ie the set score is 6-0, 6-2, 6-4 or 7-5) , then, under the present service exchange 
rules, player A also serves first in the next set (otherwise player B serves first). Thus, if 
player A has an advantage of serving first in the first set, he/she also has that advantage in 
the second set when an even number of games is played in the first set. The probability that 
player A wins a tiebreak set in an even number of games, and the probability he/she wins 
the set in an odd number of games are given in Table 1. Corresponding probabilities are 
also given for player B.  
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Table 1: The probabilities two equal players A and B win a tiebreak set in an even and odd 

number of games when there is a probabilistic advantage D in being ahead in scores 

PA 0.5 0.55 0.6 0.65 0.7 0.75 0.8 
PB 0.5 0.55 0.6 0.65 0.7 0.75 0.8 
D 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
P(A wins even) 0.2770 0.2642 0.2499 0.2342 0.2175 0.2001 0.1826 
P(A wins odd) 0.2230 0.2438 0.2665 0.2913 0.3187 0.3490 0.3832 
P(A wins) 0.5000 0.5080 0.5164 0.5256 0.5362 0.5491 0.5658 
P(B wins even) 0.2770 0.2882 0.2976 0.3052 0.3103 0.3122 0.3089 
P(B wins odd) 0.2230 0.2038 0.1860 0.1693 0.1535 0.1387 0.1253 
P(B wins) 0.5000 0.4920 0.4836 0.4744 0.4638 0.4509 0.4342 
 
Table 2 lists ten mutually exclusive outcomes for a best-of-three sets match won by player 
A, given player A serves in the first game of the first set. Note that in Table 2 a prefix is 
used to denote the server in the first game of the set, a capital letter is used to denote the 
winner of the set, and odd/even classifies the number of games played in the set. The fourth 
column in Table 2, headed probability, is obtained by multiplying the probabilities of the 
events in columns 1 and 2, or columns 1, 2 and 3 for the case in which PA=PB=0.6 and 
D=0.1. These probabilities can in turn be obtained from Table 1. Note that to obtain 
probabilities for sets with player B serving first, we can just reverse the roles of player A 
and player B (as they are equal players). Thus, for example, the probability of the event 
bBeven equals the probability of the event aAeven. 

 
Table 2:  The probabilities of ten mutually exclusive outcomes for a best-of-three tiebreak 

sets match won by player A, when PA = PB = 0.6 and D = 0.1 

First set Second set Third set Probability 
aAeven aAeven or odd  0.1290 
aAodd bAeven or odd  0.1289 
aAeven aBeven aAeven or odd 0.0384 

 
aAeven aBodd bAeven or odd 0.0225 
aAodd bBeven bAeven or odd 0.0322 
aAodd bBodd aAeven or odd 0.0367 
aBeven aAeven aAeven or odd 0.0384 
aBeven aAodd bAeven or odd 0.0384 
aBodd bAeven bAeven or odd 0.0268 
aBodd bAodd aAeven or odd 0.0179 
  TOTAL 0.5091 
 
It can be seen from Table 2 that when PA=PB=0.6 and D=0.1, the probability that player A 
wins a best-of-three tiebreak sets match given he/she serves first in the match, is equal to 
0.5091. Column (c) in Table 3 gives corresponding results for the other values of PA, PB 
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and D in Table 1. Thus, it is clear that player A gains a match advantage by serving first in 
the first set. 
 
Table 3:  The probability player A wins a best-of-three tiebreak sets match when there is a 
probabilistic advantage D in being ahead in the  score and player A serves first in the match 

PA PB D (c) P(A wins) (d) P(A wins) (e) P( A wins) 
0.5 0.5 0.1 0.5000 0.5000 0.5000 
0.55 0.55 0.1 0.5045 0.5040 0.4996 
0.6 0.6 0.1 0.5091 0.5082 0.4993 
0.65 0.65 0.1 0.5140 0.5128 0.4991 
0.7 0.7 0.1 0.5195 0.5182 0.4993 
0.75 0.75 0.1 0.5259 0.5248 0.5002 
0.8 0.8 0.1 0.5340 0.5335 0.5022 

 
(d) An alternative best-of-three tiebreak sets system 
We now consider the effect of modifying the service exchange mechanism ‘across-sets’. 
The case in which service alternates at the beginning of each set is considered. It can be 
shown using values from Table 1 that, given player A serves first in the first set, player B 
first in the second set and player A first in the third set (if necessary), the probability that 
player A wins the match is equal to 0.5082 when PA=PB=0.6 and D=0.1. This is a slight 
improvement on the present situation analysed in (c) above. The corresponding probability 
values for other values of PA, PB and D are given in column (d) of Table 3. Also, it can be 
seen that if we modify this service exchange mechanism so that player B serves first in both 
the second and third sets (if necessary), player A’s probability of winning the match is now 
1-0.5082 when PA=PB=0.6 and D=0.1. Thus, this modification to the third set server leads 
to no overall difference in fairness on simply alternating service at the beginning of each 
set. Also, note that when a set lasts an even number of games under this system, the same 
person serves the last game in that set and the first game of the following set (if played). 
This should not be a problem as the players have a two minute rest between sets. 
 
(e) An alternative ‘across-sets’ service exchange mechanism 
We now consider a slight variation in the third set to the service exchange mechanism 
considered in (d) above. We suppose the server in the third set is determined as at present. 
That is, given player B served first in the second set, player A serves first in the third set if 
there is an odd number of games in the second set, and player B serves first if there is an 
even number of games. It can be shown using values from Table 1 that, with this variation 
to (d) above, the probability player A wins the match is equal to 0.4993 when PA=PB=0.6 
and D=0.1. This represents a considerable improvement on the situation analysed in (d) 
above. The corresponding probability values for other values of PA and PB are given in 
column (e) of Table 3. (Another variation in the third set to this service exchange 
mechanism could be where the server in the third set is the player who won the most 
number of games in the first two sets. If this countback procedure leads to a tie in the 
number of games won, we use the present service exchange mechanism as in (c) above. 
This two stage countback mechanism in fact leads to a very small increase in fairness, but 
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this is not considered to be worthy of further discussion. Other countback methods have 
been considered in another context (Pollard and Noble, 2006).) 
 
 (f) A ‘within-set’ service exchange mechanism 
A service exchange mechanism similar to that used in the tiebreak game is considered. 
Player A serves in the first game, player B serves in the next two games, player A serves in 
the following two games, …(ie A,B,B,A,A,B,B,A,A,B,B,A). The present stopping rules (6-
0, 6-1, 6-2,…7-5) are used and the tiebreak game is played if the games’ score reaches 6-6. 
Under this service exchange mechanism, assuming that the two equal players have an equal 
chance of winning the tiebreak game if played, the probability player A wins the set is 
equal to 0.5046 when PA=PB=0.6 and D=0.1. It can be seen by comparing Table 4 column 
4 with Table 1 that this service exchange mechanism within a set considerably reduces the 
advantage that player A obtains by serving first. A major disadvantage of this mechanism is 
that player B is required to serve two games in a row on (up to) three occasions, and player 
A is required to do the same on (up to) two occasions. This mechanism is not considered to 
be of particular practical relevance. However, if this mechanism was used, change-of-ends 
might occur after an even number of games is played, so that, when a player serves two 
games in a row, they are from different ends of the court with a time-break between those 
service games. 
 

Table 4: The probability player A wins a tiebreak set, given player A serves first and the 
service-game order is A,B,B,A,A,B,B,A,A,B,B,A (column 4) and when the service order is 

A,B,B,A;B,A,A,B;B,A,A,B (column 5) 

PA PB D Col4 Col5 
0.5 0.5 0.1 0.5000 0.5000 
0.55 0.55 0.1 0.5023 0.5017 
0.6 0.6 0.1 0.5046 0.5032 
0.65 0.65 0.1 0.5069 0.5046 
0.7 0.7 0.1 0.5092 0.5056 
0.75 0.75 0.1 0.5116 0.5062 
0.8 0.8 0.1 0.5141 0.5060 

 
(g) Another ‘within-set’ service exchange mechanism 
A variation of the ‘tiebreak-like’ service exchange mechanism in the above paragraph is the 
following-A,B,B,A; B,A,A,B; B,A,A,B. Using the present stopping rules and this 
mechanism, it can be shown that the probability player A wins a set is equal to 0.5032 
when PA=PB=0.6 and D=0.1 (see Table 4 column5). It can be seen from Table 4 that this 
mechanism gives a slight improvement on that in the previous paragraph. Players A and B 
would each have to serve two games in a row on (up to) two occasions, and change-of-ends 
could again be ‘on-the-even’. This mechanism is also considered to be of little practical 
relevance. 
 
(h) A third ‘within-set’ service exchange mechanism 
A further ‘within-set’ mechanism is now considered. Suppose player B, the server in the 
second game of the set, is allowed to serve two games in a row on (up to) one occasion in 
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the set (whilst player A never serves two games in a row). The possibilities for the 
(maximum of) twelve games in a set (up to 6-6) are 
          (i) A,B;B,A,B,A,B,A,B,A,B,A 
         (ii) A,B,A,B;B,A,B,A,B,A,B,A 
        (iii) A,B,A,B,A,B;B,A,B,A,B,A 
        (iv) A,B,A,B,A,B,A,B;B,A,B,A 
         (v) A,B,A,B,A,B,A,B,A,B;B,A 
For these five alternatives it can be shown that the probability player A wins the set when 
PA=PB=0.6 and D=0.1 is 
          (i) 0.4976 
         (ii) 0.5037 
        (iii) 0.5078 
        (iv) 0.5111 and  
         (v) 0.5140 (see Table 5) 
Thus, the mathematics suggests that it would be in player B’s interest to elect to serve the 
two games in a row early (rather than later) in the set. However, he/she might prefer to elect 
to do it later in the set when the games are more important, or alternatively just after having 
played an ‘easy’ service game. It would seem that such a system would increase the 
‘excitement’ of the set. ‘Change-of-ends’ might  again be ‘on-the-even’. 
 
The player who serves first in a match against an equal opponent has been shown to have 
an overall advantage in the situation in which each player has the same psychological 
advantage when ahead in games’ score within the set. Several methods of decreasing this 
advantage have been considered, and two of them would seem appropriate for 
consideration. Firstly, if service alternates at the beginning of each set (except the final 
third or fifth set), the benefit a player receives from serving first in the match is reduced. 
Secondly, if the player who serves second in a set is allowed to serve on two consecutive 
occasions within that set, the benefit the player receives from serving first in the set is 
reduced. 

 
Table 5:  The probability player A wins a tiebreak set for each of the five service order 

cases (i) to (v) in Section 2(h) 

PA PB D (i) (ii) (iii) (iv) (v) 
0.5 0.5 0.1 0.5000 0.5000 0.5000 0.5000 0.5000 
0.55 0.55 0.1 0.4989 0.5018 0.5038 0.5054 0.5068 
0.6 0.6 0.1 0.4976 0.5037 0.5078 0.5111 0.5140 
0.65 0.65 0.1 0.4959 0.5059 0.5124 0.5174 0.5220 
0.7 0.7 0.1 0.4935 0.5083 0.5178 0.5250 0.5313 
0.75 0.75 0.1 0.4898 0.5109 0.5245 0.5345 0.5427 
0.8 0.8 0.1 0.4840 0.5136 0.5330 0.5469 0.5576 
 
(i) Another psychological factor 
It has been argued by some players, commentators, spectators,…that some players possess 
a different psychological factor called the ’back-to-the-wall’ effect. In this case the player is 
assumed to have a higher probability of winning a game when behind. We firstly consider 
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the case in which both players possess this factor. Thus, player A is assumed to have a 
probability PA of winning a game on service when the games’ scores are equal, and that it 
is PA+D when he/she is behind and that it is PA-D when ahead. Correspondingly, it is 
assumed that player B has a probability PB of winning a game on service when the games’ 
scores are equal, and that it is PB+D when he/she is behind and that it is PB-D when ahead. 
Thus, the psychological advantage of being behind is represented by D. Similarly to (b) 
above, and assuming player A serves first in the set, the probability player A wins a 
tiebreak set is 0.4806 (refer to Table 6) and the probability player A wins a best-of-three 
tiebreak sets match is 0.4896 (refer to Table 7 column (c) ) when PA=PB=0.6 and D=0.1. 
Using the ‘across-sets’ service exchange mechanism described in (e) above, player A’s 
probability of winning such a modified best-of-three tiebreak sets match is 0.5007 when 
PA=PB=0.6 and D=0.1 (refer to Table 7 column (d)). This represents a considerable 
improvement on the number immediately above.  
 
Table 6: The probabilities two equal players A and B win a tiebreak set in an even and odd 

number of games when there is a probabilistic advantage D in being behind in scores 

PA 0.5 0.55 0.6 0.65 0.7 0.75 0.8 
PB 0.5 0.55 0.6 0.65 0.7 0.75 0.8 
D 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
P(A wins even) 0.2712 0.2502 0.2269 0.2012 0.1726 0.1405 0.1035 
P(A wins odd) 0.2288 0.2403 0.2537 0.2685 0.2845 0.3013 0.3184 
P(A wins) 0.5000 0.4905 0.4806 0.4697 0.4571 0.4417 0.4219 
P(B wins even) 0.2712 0.2901 0.3066 0.3206 0.3315 0.3382 0.3384 
P(B wins odd) 0.2288 0.2194 0.2128 0.2097 0.2114 0.2200 0.2397 
P(B wins) 0.5000 0.5095 0.5194 0.5303 0.5429 0.5583 0.5781 

 
Table 7: The probability player A wins a best-of-three tiebreak sets match when there is a 
probabilistic advantage D in being behind in the games’ score and player A serves first in 

the match. 

PA PB D (c) P(A wins) (d) P(A wins) 
0.5 0.5 0.1 0.5000 0.5000 
0.55 0.55 0.1 0.4949 0.5004 
0.6 0.6 0.1 0.4896 0.5007 
0.65 0.65 0.1 0.4843 0.5008 
0.7 0.7 0.1 0.4788 0.5006 
0.75 0.75 0.1 0.4730 0.4997 
0.8 0.8 0.1 0.4669 0.4974 
 
The ‘within-set’ modifications considered in (f), (g) and (h) all decrease player B’s 
probability of winning a set from (1-0.4806)=0.5194. The reason for this is that under these 
modifications player B is required to serve (on average) earlier in the match so he/she is 
less often behind (when his/her p-values are higher). The mechanisms in (f) and (g) were 
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considered to be of little practical relevance. With respect to the mechanism in (h), as 
player B’s probability of winning the set is decreased for all cases (i) to (v), player B would 
presumably not elect to serve two games in a row as he/she would only decrease his/her 
probability of winning the set. 
 
 (j) The combination of the two psychological factors 
We now assume that player A possesses a ‘front-runner’ factor D1, and player B possesses 
a ‘back-to-the-wall’ factor D2. Player A’s probability of winning a service game is equal to 
PA when the games’ scores are equal, PA+D1-D2 when he /she is ahead in games’ scores, 
and PA-D1+D2 when he/she is behind. Correspondingly, player B’s probabilities on 
service are PB when equal, PB+D1-D2 when B is ahead and PB-D1+D2 when behind. It 
can be seen that player A’s probability of winning a game on service is always PA when 
D1=D2, and player B’s is always PB when D1=D2. Thus, the present scoring system is fair 
for this situation, as are the two recommendations in (h) above. 
 
(k) Doubles 
The situations for doubles are very similar. As an example, we consider section (b) above 
for the case in which PA1=PB1=0.65 and PA2=PB2=0.55 (PA and PB both average 0.6), 
the only psychological factor being the ‘front-runner’ effect for every player and it is 
assumed to be D=0.1, and the teams’ chances at the tiebreak game are assumed to be equal. 
 
When the service order is A1, B1, A2, B2,… ( the typical case in which each team uses 
their more effective server first) the probability team A wins the tiebreak set is 0.5189. 
When the service order is A2, B2, A1, B1,…the probability team A wins the set is 0.5139 ( 
a fairer outcome than for the order in the previous sentence). This suggests a minor 
adjustment to the ‘across-sets’ modification in (e) above. Namely, if team A serves first in 
the first set (with service order A1, B1, A2, B2) and team B serves first in the second set 
(with service order B1, A1, B2, A2), then if team A serves first in the third set, the first two 
servers should be reversed (ie A2, B2, A1, B1,…), and if team B serves first in the third set, 
the order should be B2,A2,B1,A1. 
 
Looking at the ‘within-set’ changes considered in section (h) (cases (i) and (ii) in 
particular), when the order is A1,B1;B2,A2,B1,A1,…, the probability team A wins the set 
is 0.4820, and when the order is A1,B1,A2,B2;B1,A1,B2,A2,…, the probability team A 
wins the set is 0.5054. This suggests that after four games have been played within a set, 
team B be allowed to play two service games in a row. 
 
RESULTS 
 
Given two equal singles players with an equal psychological advantage when ahead, the 
player who serves first is shown to have a probability of winning the set greater than 0.5. 
His/her probability of winning a best-of-three sets match is also greater than 0.5. Thus, 
given the existence of a psychological advantage when ahead, the present best-of-three 
tiebreak sets scoring system is unfair. 
 
It has been shown in the previous section that the present scoring system can be made fairer 
by two methods. Firstly, alternating service at the beginning of each set (with the server in 
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the final third or fifth set being determined as at present) reduces the unfairness. Secondly, 
allowing the player who serves in the second game of a set to serve (only (up to) once) on 
two consecutive games within that set also reduces the unfairness. 
 
The reverse psychological effect is when a player lifts his/her game when he/she is behind 
in games’ score (the “back-to-the-wall” effect). The two methods above have also been 
shown to be applicable to the situation in which one player has the psychological advantage 
of being ahead or its reverse, whilst the other player also has this psychological advantage 
or its reverse. 
 
Also for doubles, the above two methods were shown to decrease unfairness. Interestingly, 
the unfairness is further reduced by reversing the service order within each doubles pair for 
the final third or fifth set. 
  
DISCUSSION 
 
The problem that the person or team that serves first in a set of tennis, has an advantage, 
has been long recognised. Indeed, it is an intrinsic difficulty within the tennis scoring 
system, and in this paper it has been quantified. The solution presently used is to toss a 
coin, so that each player or team has an equal chance of getting the advantage of serving 
first. A better solution is to modify the scoring system so that the advantage of serving first 
is decreased or reduced to zero. Scoring systems in which this advantage is zero have been 
devised (Miles, 1984), but their structures are quite different to the present tennis scoring 
system. A change to such a structure would be regarded by many people as a major change, 
and hence would be unlikely to gain acceptance. In this paper, minor changes to just the 
service exchange mechanism within the scoring system have been considered and shown to 
decrease the advantage gained by the person or team that serves first. 
 
The methods of this paper can be used to analyse the one-day and test versions of a series 
of (say) three or five cricket matches. At present there is a toss before each match within 
the series. Assuming there is a psychological advantage in batting first in a match, then it 
can be shown that it is better to toss only before the first match within the series, and then 
alternate the first team to start the batting after that. The team to bat first in the final (third 
or fifth) match could be determined by some countback procedure. More generally, it can 
be seen that the toss of a coin is often used to create fairness in a situation that is 
intrinsically unfair. The irony of the situation in cricket is that the use of the toss of a coin 
three or five times only makes the rules about the first team to bat in each match not as 
good as they can be. One toss is not only enough, but it is better when followed by an 
alternating structure. 
 
CONCLUSIONS 
 
For the situation in which players have a psychological advantage when ahead in games’ 
score, the player who serves first in a set of tennis has been shown to have an advantage. 
This (set) advantage can be decreased by alternating service at the beginning of each set 
(with the exception of the final third or fifth set which would be determined under the 
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present rules). This change to the present service exchange mechanism would be very easy 
to implement, and it appears to have no real drawbacks. 
 
The advantage of serving first in a set can be further reduced by allowing the player who 
serves in the second game of the set to serve on two consecutive games at some stage 
within that set. This might seem to be a little unusual at first, but it would appear to create 
some additional excitement in the set for the spectators. It would also create a strategic and 
additional dynamic element in the set for the players. However, it might be more difficult 
for such a change to gain acceptance. Also, these two changes in the service exchange 
mechanism have been shown to be applicable when either or both players have either this 
psychological effect (the ‘front-runner’ effect) or its reverse (the ‘back-to- the-wall’ effect). 
 
Finally, the two changes have been shown to be applicable to doubles. The advantage of 
serving first in the match is further reduced in doubles by reversing the service order within 
each doubles pair for the final third or fifth set in a match. 
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ABSTRACT 
 
It is widely accepted that luck has some influence on all sporting events, whether it be 
an injury at a crucial time, an unfortunate bounce of the ball or a controversial decision 
by an official. But just how much does the result of a match come down to bad or good 
luck i.e. the random events within a game? A Markov process model with 18 states has 
been developed to approximate AFL football using match statistics. The models have 
been applied to matches from the 2003 and 2004 AFL seasons and displayed very 
encouraging results with minimal errors. Using transition probabilities derived from 
these matches, simulated goal distributions and probabilities of victory have been 
calculated. Using these distributions and the standard errors for each team’s match 
scores, the randomness that occurs in AFL matches is identified. Some of these matches 
have been investigated with the results presented in this paper. 
 
KEY WORDS 
Markov process, Poisson distribution, computer simulation, random events 
 

INTRODUCTION 
 
In almost all sports played worldwide, there is an element of luck associated with 
performance. The game of Australian Rules football is no different. The fact that the 
ball used is oval in shape and often does not bounce as expected probably exacerbates 
the importance of being on the right side of lady luck. Historically, the issue of chance 
in sport and the role it plays has not been a focal point of academic research. 
Investigation into chance playing a part in sporting outcomes has mostly been 
concentrated on soccer. 
 
Early work on modelling sporting events using statistical distributions found that the 
best descriptor of goals scored in soccer was the negative binomial distribution 
(Moroney, 1956). The author expressed surprise that weather conditions and the 
strength of the competing teams did not exert as great an effect as is often supposed. 
Later work also found the negative binomial distribution to give the best fit due to it 
being generated by random or chance mechanisms that underlie the conclusion that 
soccer is a game dominated by chance. It was suggested that, due to this notion, a team 
who recognised this random element would be able to develop a successful style of play 
that harnessed the importance of chance on the game (Reep and Benjamin, 1968). A 
direct style of play was deemed to be the best method by which to harness the chance 
occurrences that appear in soccer. By putting the ball into goal scoring situations as 
often as possible, a team was more likely to take advantage of these opportunities when 
they arose. Recent work has traced this direct and successful style of play back to the 
Arsenal side of the 1930s, but does acknowledge the part Reep played in bringing it to 
the successful Norwegian side of the 1990s (Larson, 2001). 
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The negative binomial distribution was applied to a number of facets of different sports 
(Pollard, Benjamin and Reep, 1977). Events looked at included passing chains in soccer 
(and goal scoring), points scored in gridiron, runs in a baseball half-inning, goals scored 
in ice-hockey, strokes per rally in tennis and runs scored per partnership in cricket. It 
was found that the negative binomial produced a good fit where there was an occurrence 
of infrequent events in a team environment e.g. soccer goals. However, when individual 
performances were looked at, such as in the tennis or cricket examples, there was not a 
close fit, indicating that individual skill was more significant than chance in these 
instances.  
 
These discoveries lend weight to chance playing a significant part in matches played in 
the Australian Football League (AFL), where the negative binomial has been found to 
be the best approximation for goal scoring in the competition, and the Poisson is the 
best approximation for individual team returns (Forbes, 2006). This paper uses a 
Markov process model to investigate matches from the 2005 AFL season, highlighting 
the importance of chance and making the most of it to win AFL games. Furthermore, 
simulated matches give a better understanding of the amount of variation and 
randomness that can be expected in a team’s score for a match. 
 

THE MODEL AND SIMULATION PROCESS 
 
An 18-state Markov process model has been developed to approximate Australian Rules 
football (Forbes, 2006). This model builds on an earlier, cruder model that was made up 
of only seven states (Forbes and Clarke, 2004). The accuracy of this model in reflecting 
the events of a match is impressive. It gives rise to a number of applications that can be 
used by AFL clubs, as well as media outlets and sports bookmakers. Some of the 
applications of the model will be presented in the case studies that follow, investigating 
the role of chance and random events in AFL football.  
 
A simulation program has been developed to utilise the model in a post match 
environment. The underlying idea of the program is to generate random numbers that 
determine which state the model will move into next. The process has been broken 
down into four parts to reflect more accurately an AFL match, which is divided into 
four quarters. The starting state for each quarter is state seven (centre bounce) and the 
simulation is run according to the number of transitions contained in the match divided 
by four. The simulation is run 10,000 times in general, but there is no restriction, save 
CPU processing time, to the number of times it can be run. To give an example of 
speed, on a notebook with 256MB of RAM, a season comprising 185 matches can have 
each match simulated 10,000 times in roughly 20 minutes. 
 
Upon running a simulation of a match, or set of matches, there is a variety of 
information that can be gleaned from the process. Perhaps the most important and 
useful data are the projected score of each team for each simulated match. Goals are 
calculated for each team by counting the number of times either Team A or B had 
possession directly before a centre bounce, excluding the centre bounce at the start of 
each quarter. These occurrences are then multiplied by six and added to the number of 
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times the model entered the behind state for each team to come up with a match score, 
which is then used to ascertain the match outcome. The probability of victory for each 
team and the likelihood of a draw is then a simple calculation according to the expected 
outcome. Other information that can be extracted from a simulation is the proportion of 
time the ‘match’ is likely to spend in any one state and the number of occurrences of 
each state within a simulated match.  
 
The simulation process was validated by the results obtained under different scenarios. 
Home advantage in the AFL competition between 1998 and 2003 amounted to 12.3 
points on average. When the 2004 season was simulated using a transition matrix for 
each match, the average margin in favour of the home side amounted to a very similar 
11.8 points. A matrix was derived for the 2005 season based on the 185 matches and 
used to simulate an ‘average’ match. The score line that resulted from the simulation 
was 99-90 in Team A’s favour, whereas for the actual data from the 2005 season, the 
average score was 102-87, again suggesting a favourable comparison between the 
simulated and actual results. Further results from the simulation program will be 
presented in the following case studies. 
 

CASE STUDY 1: SYDNEY V WEST COAST 
 
The 2005 AFL Grand Final was a classic, not so much for the quality of football played, 
but more so due to the commitment of both teams and the knife edge atmosphere that 
was created by the closeness of the score line. In the end Sydney won the match by just 
four points, 58-54, and no doubt West Coast spent the summer licking their wounds and 
pondering upon just how close they came. Some analysis has been done on the match to 
investigate how much of a part randomness played in the final result and to determine 
whether this was a game that could have been won by the bounce of the ball. 
 
The transition matrix for the match was derived using the 18-state zone model. The 
match contained 885 transitions, which amounts to 221 a quarter. Using the observed 
transition matrix and the number of transitions for a quarter, the match was simulated 
10,000 times. From the simulation, expected scores for each team were obtained, along 
with probabilities of victory and these are contained in Table 1. 

Table 1: Sydney v West Coast simulated output 
Team Mean Std Dev Probability of Victory 
Sydney 58.4 16.9 0.53 
West Coast 56.0 16.0 0.45 

 
What is evident from Table 1 is that, with the transition probabilities as they were in the 
match, the West Coast were expected to score, on average, two more points than they 
did. They have a mean score of 56.0 points from the simulation results, yet in the Grand 
Final they scored 54 points. Do we then consider West Coast unlucky not to get the 
return on the scoreboard that was expected from the way the match was played? They 
had a 45% chance of winning the match and a 2% chance of the draw. 
 
To continue on from this match, the distribution of goals for each team has been 
calculated from the simulated matches. It has been discovered in other research that the 
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distribution of goals for teams in the AFL is best approximated by the Poisson 
distribution (Forbes, 2006). The assumptions that must be met for the Poisson 
distribution to apply are that the probability of an event within a certain interval does 
not change over different intervals and that the probability of an event in one interval is 
independent of the probability of an event in any other non-overlapping interval. The 
first assumption indicates that club scoring rates in the AFL do not vary from week to 
week and therefore, are not affected by factors such as weather conditions, venue size, 
strength of the opposition or influential players missing. Although this is somewhat of a 
surprising result, the distributions presented below for both Sydney and the West Coast, 
highlight the variability associated with how many goals a team can be expected to 
score in an AFL match. 
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Figure 1: Sydney goal distribution from simulated Grand Final 
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Figure 2: West Coast goal distribution from simulated Grand Final 

The final analysis of the Grand Final involves what turned out to be the ultimate play of 
the match. West Coast surged into attack and West Coast players were queuing up to 
mark the ball when Sydney’s Leo Barry came from the side for a spectacular contested 
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mark. Barry’s mark was the kind of mark that a player might pull off a couple of times 
during a career and further indicates the importance of taking your chances when they 
arise. The ball could quite easily have been marked by a West Coast player, who would 
have had a relatively straight forward shot on goal to win a premiership. 
 
To investigate the importance of Barry’s mark, the last three plays of the game have 
been simulated starting from West Coast possession in the midfield, with the next 
transition resulting in an Inside 50 play for the West Coast. Using the matches from the 
simulation where these conditions were satisfied, with Sydney leading the match by 
four points at the time, the West Coast were found to have an 11% chance of winning 
the match. Even though this is still a relatively low chance of winning, compared to 
Sydney’s chances, it indicates the importance of the play by Barry. Paul Roos, the coach 
of Sydney, would not like to endure those final few seconds again, knowing that he had 
an 11% chance of having the Premiership snatched away from him if Barry spills the 
mark. 

CASE STUDY 2: KANGAROOS V RICHMOND 
 
The 2005, round 12 match between the Kangaroos and Richmond, saw the Roos walk 
away with a comfortable 29 point victory, 109 - 80. On paper, the issue of chance does 
not seem to be a concern. A five goal victory is comprehensive in anyone’s language, 
but upon drilling deeper into the match statistics, chance played a big part in such an 
easy win. The transition matrix for the match, when used in the simulation program 
produced an expected score line of 111 – 78, which is actually four points more than the 
observed margin, indicating that perhaps Richmond were ‘lucky’ to get as close as they 
did. Not surprisingly, the Kangaroos were an 85% chance of winning the match. 
 
That aside, the goal kicking of both teams was the crucial difference, with the 
Kangaroos kicking 17 goals, 7 behinds and Richmond 10 goals, 20 behinds. Richmond 
had six more scoring shots than their opponents, yet they were soundly beaten by nearly 
five goals. The possession profiles of the teams were very similar and this is highlighted 
by how they entered their attacking zones. Table 2 contains the profile for each team 
when they put the ball into their attacking zone. 
Table 2: Distribution of ball into attacking zones, Kangaroos v Richmond, round 12 

2005 
Team  BUBO THIN DISP APOS BPOS BEHI CEBO Total 
Kangaroos Count 0 0 21 17 5 0 3 46 
Kangaroos % 0.0 0.0 45.7 37.0 10.9 0.0 6.5 100.0 
Richmond Count 0 0 22 10 20 3 0 55 
Richmond % 0.0 0.0 40.0 18.2 36.4 5.5 0.0 100.0 

 
There is no clear indication from Table 2 as to why the Kangaroos were such easy 
victors. In their favour was the ability to kick long goals from outside 50m. Aside from 
this, the profiles are very similar. Deeper investigation has to be carried out on what 
happened when the ball was in the attacking zones to see why there was such a 
discrepancy on the scoreboard. Richmond did better than the Kangaroos at getting the 
ball from dispute in the Kangaroos attacking zone. In Richmond’s attacking zone the 
teams broke even in this area. The lopsided scoreboard can only be put down to 
Richmond’s inaccuracy both from inside and outside 50. Table 2 shows that the 
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Kangaroos kicked three goals from beyond 50m whilst Richmond could manage only 
three behinds. When the ball got into the attacking zones, the Kangaroos kicked a goal 
40.0% of the time and a behind only 20.0% of the time, whereas, Richmond could 
manage a goal only 16.8% of the time and a behind 30.4% of the time. This is a clear 
case where the relationships in the game are relatively equal; however, poor conversion 
by one side has led to a comprehensive defeat. 
 
To investigate the random effect of goal kicking accuracy, adjustments have been made 
to the transition matrix so that each side has a similar conversion rate of 50%. Using this 
adjusted matrix in the simulation program, the expected score line is now 111 – 104 in 
the Kangaroos favour, but they are now only a 59% chance of winning. This is a 
powerful example of the importance of accurate kicking in the AFL. Richmond, 
cruelled their chances of victory with poor conversion and this is a purely random 
occurrence as the week before they kicked 15 goals, 13 behinds and the week after 9 
goals, 8 behinds. 
 

CONCLUSION 
 
Clearly, randomness is a big part of success in the AFL competition. With the aid of an 
18 state Markov process model and a simulation program, two case studies have been 
presented that identify the importance of chance in AFL matches. The first game looked 
at was the 2005 grand final and the simulated goal distributions gave a clear indication 
of the variability one can expect from game to game in goals kicked. Furthermore, the 
expected score line was closer than the actual score, highlighting that perhaps the luck 
did not run with the West Coast. Finally, a once in a lifetime mark at the end of the 
game saved the premiership for Sydney, when  a different outcome produced an 11% 
chance of victory for the opposition with only three plays left in the match. 
 
The second case study highlighted the random effect of goal kicking in an AFL match; 
Richmond had more shots than their opposition, but got beaten by five goals due to their 
poor conversion. With an adjusted conversion rate of 50%, surpassed by Richmond in 
the week before and the week after the match, their chances of victory improved by over 
25%. This is another example of the effect of chance in the competition and, for 
Richmond, the match against the Kangaroos was obviously one of those days. 
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ABSTRACT 
 
Australian Rules Football, governed by the Australian Football League (AFL) is the 
most popular winter sport played in Australia. Like North American team based leagues 
such as the NFL, NBA and NHL, the AFL uses a draft system for rookie players to join 
a team’s list. The existing method of allocating draft selections in the AFL is simply 
based on the reverse order of each team’s finishing position for that season, with teams 
winning less than or equal to 5 regular season matches obtaining an additional early 
round priority draft pick. Much criticism has been leveled at the existing system since it 
rewards losing teams and does not encourage poorly performing teams to win matches 
once their season is effectively over. We propose a probability-based system that 
allocates a score based on teams that win ‘unimportant’ matches (akin to Carl Morris’ 
definition of importance). We base the calculation of ‘unimportance’ on the likelihood 
of a team making the final eight following each round of the season. We then 
investigate a variety of approaches based on the ‘unimportance’ measure to derive a 
score for ‘unimportant’ and unlikely wins. We explore derivatives of this system, 
compare past draft picks with those obtained under our system, and discuss the 
attractiveness of teams knowing the draft reward for winning each match in a season. 
 

KEY WORDS 
AFL, probability, draft, importance 

 
INTRODUCTION 
 
The AFL draft system has been designed to favour teams anchored to the bottom of the 
ladder. This enables those teams to improve their player lists and propel themselves up 
the ladder during future seasons by having a first choice of picking rookie players. 
Currently, the order of the AFL draft coincides with the inverse order of the ladder as it 
stands at the conclusion of the home and away season. This system allocates the first 
draft choice to the team that finished last (or sixteenth), the second draft choice to the 
team that finished fifteenth, and the sixteenth draft choice to the team that finished first. 
Subsequent rounds of the draft replicate the exact order of the first round 
(www.afl.com.au). 
 
A highly contentious issue surrounding the AFL draft has been the allocation of priority 
picks. A priority pick is a draft choice provided to a team prior to the first round of the 
national draft. From 1997 to 2005, priority picks were provided to teams that won fewer 
than five games during the regular season (www.afl.com.au). In effect, if a team 
finished last with less than five wins, they received a priority pick in addition to the first 
choice in the national draft, thus enabling the club to receive the two best available 
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players. This system provided teams with poor win/loss records with little incentive to 
win games during the latter part of the season and actually provided clubs with an 
incentive not to win five games. 
 
The draft systems of other major world sports are somewhat comparable to that of the 
AFL. Major League Baseball (MLB) and the American National Football League 
(NFL) both allocate draft choices using inversed final season standings (Grier & 
Tollison, 1994; Spurr, 2000). However, neither competition provides priority picks and 
thus does not provide additional reward for winning only a handful of games. 
 
Several studies have assessed the incentive effects of draft systems and their impact on 
team performance. Taylor and Trogdon (2002) assessed the performance of teams 
following initiatives by the NBA to reduce team incentives to win or lose games. After 
controlling for venue and the quality of each team, these authors found that when draft 
choices were decided on inverse rankings (1983-84 season), non-playoff teams were 2.5 
times more likely to lose games than teams likely to feature in the playoffs. However, 
when the NBA modified the draft system and gave all teams an equal probability of 
obtaining the first draft choice (1984-85 season), non-playoff teams were as likely to 
win as play-off bound teams. Finally, when the lottery system became weighted during 
the 1989-1990 season, non-playoff teams were 2.2 times more likely to lose when 
compared to teams qualifying for the playoffs (Taylor & Trogdon, 2002). These 
findings demonstrate the profound impact of providing incentives for teams to lose 
games and head towards the bottom of the ladder. Furthermore, it highlights that an 
incentive based system such as the process employed by the AFL increases the 
likelihood that teams will lose additional matches during the latter part of the season 
since they are unlikely to feature in the finals. 

 
In this paper we use a model that allocates a Draft Point Reward (DPR) to each team 
when they win a match. This reward varies in value from 0 to 1 depending upon the 
Unimportance of the match. The cumulative sum of DPR, known as the DScore, is used 
to determine the final draft picks at the conclusion of the regular season. 

 
We will begin our work by defining the criteria our model should meet. We then outline 
the methods employed, and consider the operational aspects of the model. 
 

METHODS 
 
Our system is based on Carl Morris’ famous work on the most important points in 
tennis (Morris, 1977). He defined the importance of a point as the difference between 
two conditional probabilities: the probability a server wins the game given that he wins 
the next point, minus the probability a server wins the game given that he loses the next 
point. Here we are not considering points in a game, but rather matches in a season, and 
it is the Unimportant matches that appeal to us. We calculated Unimportance so that it is 
independent of the opposing team. 
 
Criteria 
In devising the system of selection for the AFL national draft, we designed our model 
based on the following: 

1. Teams with a reduced probability of making the finals are rewarded 
incrementally higher for winning matches of high Unimportance 

2. Teams that have qualified for the finals are ineligible for any reward. 
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3. DPR is restricted to a 16-week period commencing from the end of Round 6. 
4. DPR is higher for teams unlikely to win, and is further enhanced by the 

Unimportance of a match in terms of making the finals. 
5. No DPR is given in defeat, so teams must win to obtain a reward. 
6. A priority system is in place to protect teams that have continuous runs of 

losses, but it is not implemented at the expense of rewarding victory. 
The way in which the number of matches ‘needed to win’ is calculated is based upon 
the minimum number of wins needed by a team in the remainder of the season based 
solely upon making the final 8 (F8). Obviously this is not precisely known until the end 
of the season; however a reasonable estimation can be made.  
 
Probabilistic model 
The heart of our model is based upon reworking Morris’ equation to suit our purpose of 
determining how Unimportant a match is to a team’s finals aspirations.  There are a 
number of things that we need to evaluate first, such as what measures are required in 
our assessment of what makes a match Important, and, in turn, Unimportant. A regular 
AFL season constitutes 22 matches and we need to consider the probability of a team 
making the finals based upon the number of matches won at round r.  There are a 
number of features in our probabilistic model that were used to determine how much a 
team was rewarded for winning a match. The process is as follows: 

1. Determine the minimum number of wins (Par Wins) required for team i to make 
the final 8 after round r. 

2. Check if team i at round r has already made the final 8 or cannot make the final 
8. If neither of these events are true, we determine the probability of team i 
making the finals at the completion of round r. 

3. Calculate the Unimportance of match r +1 for team i using the above results. 
4. Allocate the Draft Points Reward (DPR) based on the above measures. 
 

Determination of projected wins to make the final 8 
There are two possible approaches to determining the number of wins required to make 
the final 8 at round r for team i. We could either use the final season’s required wins 
and impose that retrospectively on the completed season, or use a projected requirement 
during the season and keep this result even at the end of the season. For example, in 
season 2004, the eighth placed team won 12 of 22 matches to make the finals. 
Ultimately, differing results make it difficult to predict this result during the season. 
However, the attraction of our model is that teams must know the rewards of winning 
their next match prior to the game as an incentive to win. They should also be confident 
this reward does not change post game. So we used a projected final 8 wins, or Par 
Wins, during the season and maintain these values to seasons end, despite minor 
variations in predictions. 
 
We formally define the number of wins required after round r for team i as Par winsi r( )  
; and the total number of wins for team i at the completion of round r as TWi r( ) . Using 
the 8th ranked team at any round r as the ideal Par proportion in determining the wins 
required to make the finals, we obtain 

Par winsi r( ) = max 
TW

8th  ranked team
r( )( )× 22

r

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ − TWi(r),0

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟         (1) 

This does, on occasion, return a result that is not possible. For example, a team with 4 
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wins at the completion of round 7, and sitting in 8th place, yields a Par Wins of 8.57. 
Therefore we round to the nearest 0.5, using 0.25 and 0.75 as the round off points. In 
this example, we round to 8.5, and this is interpreted as team i requiring 8.5 wins 
(minimum) from the remaining 15 games to make the finals. 
 
Determination of the probability of making the final 8 
At the heart of the second stage of the process is the binomial distribution. A number of 
other methods were considered, such as simulating the remainder of the season using 
success probabilities for each team using p = 0.5, or varying p; also averaging the 
number of wins of all teams and forward multiplying to determine the number of wins 
needed to make the final 8. Ultimately, it was both simplicity and a reduction of 
variability that settled our choice. We define the probability of team i at the completion 
of round r making the final 8 as )|8(Pr rFi . Using ),;( pnxB  (the cumulative binomial 
distribution function with x = number of successes, n = number of trials and p = 
probability of success), we have 

( ){ } ( )( ) ( ){ } ( )( )[ ]iirrWinsParrWinsParrWinsPari prrBrF
iii

,22;1Par wins111)|8(Pr 22)(00 −−−+= −≤∩>=  
     (2) 

where { }a1  is the indicator function taking value 1 if condition a is true and 0 if false.  
Notably, one must consider the value of ip . We have chosen to look at two methods, 
the first, and predominant choice in our results, is the classic coin toss model ( )5.0=ip . 

The second method uses the winning ratio ⎟
⎠
⎞

⎜
⎝
⎛ =

r
p i

i
TW . One could be tempted to use 

successful prediction probabilities such as those determined by Stefani and Clarke 
(1992); or the simpler winning ratio. However, we wanted the system to be as simple as 
possible, and the introduction of a nested probability model may complicate this idea. A 
brief treatment of this is given in the discussion section. 
 
The unimportance of a match 
We define the Importance for team i at the end of round r, or ( )rIi , as: 

( ) )1|8(Pr)1|8(Pr +−+= rmatchLoseFMakermatchWinFMakerI iii        (3) 
Now we unpack the two components of Importance: 

{ } ( )( ) ( ){ } ( )( )[ ]prrWinsParB
rmatchWinFMake

irrWinsParrWinsParrWinsPar

i

iii
,122;2)(111

)1|8(Pr

22)(00)( +−−−+
=+

−≤∩>=

      (4) 

and 

{ } ( )( ) ( ){ } ( )( )[ ]prrWinsParB
rmatchLoseFMake

irrWinsParrWinsParrWinsPar

i

iii
,122;1)(111

)1|8(Pr

22)(00)( +−−−+
=+

−≤∩>=

      (5) 

By using the binomial cumulative density function to model the probability of making 
the finals based on winning or losing the next match, we can, in turn, calculate the 
Unimportance of a match. Through some neat cancellation of terms we obtained a 
simple result for the Unimportance: 
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Ui r( ) =1− Ii r( )
=1+ Pri MakeF 8 | Losematch r +1( )− Pri MakeF 8 | Win match r +1( )
=1+ 1− B x;n, p( )[ ]− 1− B x −1;n, p( )[ ]

=1+ 1− b k;n, p( )
k = 0

x

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
− 1− b k;n, p( )

k= 0

x−1

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=1+ 1− b(0;n, p) + b(1;n, p) +L+ b(x;n, p)( )[ ]− 1− b(0;n, p) + b(1;n, p) +L+ b(x −1;n, p)( )[ ]
=1− b(x;n, p)
So, 

( )prWinsParbrU ii ),1(22;1)( +−−=           .(6) 
Noting ),;( pnxb  (the discrete binomial distribution function with x = number of 
successes, n = number of trials and p = probability of success) in the final result, 
Unimportance is simple to evaluate, relying on a discrete rather than continuous result, 
and given the values of Par Wins, can be easily computed using a scientific calculator. 
 
Allocation of Draft Point Reward (DPR) 
The allocation of DPR is simply the Unimportance probability multiplied by the 
probability of not making the final 8 at round r. In this way, the Unimportance is 
tempered by the likelihood of making the final 8. Teams that cannot make the final 8 
receive the highest weight possible (1), that is, the full Unimportance probability, as 
long as they win the match. The allocation of DPR for team i at round r is given by the 
following:  

{ } { } ( )( )rFrUrDPR iirrmatchwinsii |8Pr1)(11)( 6 −⋅⋅⋅= >          (7) 
 
where { }a1  is the indicator function taking value 1 if condition a is true and 0 if false. 
The Draft Score, or DScore, for team i at round r is simply the sum of the DPR: 
 

( ) ( ) { }22,..,7,
7

∈= ∑
=

rkDPRrDScore
r

k
ii           (8) 

 
Using the DScore for the national pre-season draft 
The use of the DScore towards draft selections encompasses some parts of the AFL’s 
latest policy on priority picks. For our DScore system, the teams are ranked 1 through 
16, with the highest DScore attracting pick 1, and the lowest pick 16. This ordering 
remains for the subsequent iterations of the draft with one exception. Current AFL 
policy dictates that a team that wins less than or equal to 4 matches in a season receives 
a priority pick in the second round of the draft. As a method of protecting teams that 
may never win another match after round 6, we employ a similar priority pick system, 
whereby a team that wins less than or equal to 5 matches in a season receives a priority 
pick at the start of the second round of the draft. This is a little more generous than the 
AFL system, however the bottom side will not necessarily end up with the first draft 
pick under the DScore model. 
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RESULTS 
 
We begin by examining how the system operated for 2005 in finer detail. We then cover 
some interesting scenarios, and investigate the implications of the model. 
 
The 2005 season 
For season 2005, a number of teams remained in contention for the final 8 right through 
to the last round. The final round saw five teams competing for three finals places. One 
win separated 6th through 10th at seasons end. Notably, half a win separated last (16th) 
from 14th and all three bottom sides received a reward from the AFL for winning less 
than or equal to 5 matches. Table 1 outlines the final results of three draft systems; first 
the variable success DScore model, then the 50-50 DScore model, and finally the AFL 
system. Note that there is little variation when using a team’s win ratio to determine 

)|8(Pr rFi instead of the simpler 5.0=ip , and henceforth we will only consider the 
equal success probability model.  

Table 1 : Draft pick comparison for DScore and actual draft system for the 2005 AFL 
season. 

Team DScore, 
r

p i
i

TW
=  DScore, 5.0=ip  AFL Draft 

System 
Carlton 9 9 4 
Collingwood 7 7 5 
Hawthorn 5 3 6 
Essendon 2 2 7 
Richmond 11 11 8 
Brisbane 4 4 9 
Fremantle 6 6 10 
Western Bulldogs 1 1 11 
Port Adelaide 3 5 12 
Melbourne 14 13 13 
Geelong 15 14 14 
Kangaroos 13 15 15 
St Kilda 10 10 16 
Sydney 8 8 17 
West Coast 16 16 18 
Adelaide 12 12 19 
Priority 17 17 1 
Priority 18 18 2 
Priority 19 19 3 

 
Carlton, Collingwood and Hawthorn received priority picks 1, 2 and 3 respectively 
under both the AFL model and our model, although ours comes into effect in round 2 of 
the draft. Variations in the 2005 season round-by-round results are given in Figure 1. 
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Figure 1: DScore by Round by teams for 2005 
 
Variation of the DScore throughout the season is evident; with the number 1 pick 
changing teams 11 times during the season - twice in the last three rounds. Also, picks 3 
to 7 provided extremely close results in the final round, given that if Collingwood had 
won its last match against the Western Bulldogs they could have secured pick 3 (instead 
of 7) and cost the Western Bulldogs first pick. So a win to Collingwood under the 
DScore model would see a rise to pick 3, however a win under the AFL model would 
have seen a drop to pick 5. 
 
An evaluation of the incentive of the DScore model 
Ideally the DScore model should evidence high DPR continuously for low placed 
teams, given they win. Table 3 outlines the number of teams in contention for the 
number one pick in the last round, and three rounds before the end of the home and 
away season under the DScore model. The first overall draft pick changed teams in the 
last round during seasons 2001, 2005, and in the last 3 rounds during seasons 1997, 
1999, 2001, 2003, 2004, 2005. There was a blowout in the DScore in 2000 and thus, the 
race for the top draft pick was over by round 20. However, six teams fought it out for 
picks 2 to 7. Of course, these matches were not played with the DScore incentive and 
therefore imposing it retrospectively is hypothetical. 
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Table 3 : Number of teams in contention for the number one draft pick going into the 
final round of seasons 1997 to 2005 

Season Number of teams in contention 
for Pick 1, Round 22 

Teams in contention for 
Pick 1, Round 19 

2005 2 5 
2004 2 3 
2003 3 5 
2002 2 5 
2001 3 4 
2000 1 5 
1999 2 5 
1998 1 6 
1997 4 6 

Aside from the 1998 and 2000 seasons, the race for the number one draft pick would 
have remained alive and well prior to the final round. 
 
Importance 
Of interest to us was when the maximum value of importance occurs for each team. We 
then sorted the teams by final ladder position (FLP) and calculated the mean and 
standard deviation of the round, as given in Figure 2.  
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Figure 2: Error Bars of Maximum Round of Importance by Final Ladder Position 

(1997-05) 
 
As shown in Figure 2, the teams finishing in the top 2 and bottom 3 have their most 
important games generally in the early rounds of the season (note that we have only 
considered round 6 onwards). All other teams heading towards the middle of the ladder 
have maximal important matches later in the season. As one would expect, the 8th FLP 
has the maximal importance match in the last three rounds. 
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DISCUSSION 
 
It is somewhat difficult to measure the effect of our model on past results as we are 
implementing our method retrospectively. As a consequence, where players would end 
up under our model would be different to reality and therefore team success may 
change. Even so, the findings are still an eye-opener, and indeed motivate poorer teams 
toward success. As was shown in the results section, for the final round of 1998, the 1st 
and 2nd draft pick had been decided. However, 11 teams could still be playing in 
expectation of a change in their draft pick with a victory.  The ‘ideal’ advocate of our 
system was the final round of 2003. Geelong played St Kilda, and it could be argued 
they were playing for ‘nothing’, sitting 10th and 13th on the ladder - no finals place or 
priority pick at stake. Under our DScore system the winner of that match would take 1st 
pick and the loser potentially 3rd. The match played on Saturday had Geelong prevail by 
19 points, snatching 1st pick.  Remarkably, the result was not yet settled, with the 
Sunday encounter between Hawthorn (9th) and Richmond (10th), (again two sides with 
nothing to play for), pivotal in the DScore outcome. Hawthorn won by 4 points, 
winning their fourth game in a row, snatching the number 1 pick on the last game of the 
home and away season! 
 
Alternatives 
A criticism that may be leveled at the DScore system is that teams which continually 
lose are never rewarded. A possible way of assisting teams that consistently lose may be 
to reward a ‘gallant’ defeat. Calculating an expected and actual margin, then smoothing 
the difference, is an approach used in other areas of sport analysis, such as tennis as in 
Bedford and Clarke (2000). They used their model to predict and improve upon ATP 
ratings in tennis based on margin of victory rather than win or loss. Once again, a team 
may play so poorly as to never get within the expected margin, and the same problem 
arises. We believe the priority criteria is a reasonable approach to combat this, and we 
can only hope teams would ‘try harder’ to win to obtain better draft picks, and in turn, 
enhance their future chances, rather than ‘lie down’ and be rewarded for defeat. 
 
A point of interest raised in the methods section was the possible inclusion of a team’s 
relative skill into the system, either using probabilities such as those pioneered by 
Stefani and Clarke (1992), or more arbitrary measures such as a win ratio to weight the 
DPR. The use of an ‘opponent’ weight would see some rather unattractive scenarios. 
Specifically, the use of a probability based multiplier on the DPR introduces only 
occasional need for lowly placed teams to win, as they need only defeat one successful 
team and reap a high DPR, thereby obtaining a high draft pick. This is a clear 
disincentive as the DScore system is designed to encourage teams to win every game 
possible. 
 
CONCLUSION 
 
In this paper, we have developed a unique system for player allocation in the AFL draft 
using probabilistic principles designed to encourage success. Whilst the AFL system 
was not designed to encourage teams to lose, it does reward teams that only win a small 
amount of games. Our model, known as the DScore model, uniquely encourages teams 
to strive for victory with a high draft pick as the prize, especially when the game (and 
their season) is - in terms of the finals - Unimportant. Utilizing this principle of 
unimportance, we cited exciting and motivating cases whereby otherwise ‘meaningless’ 
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encounters become a battle for high draft picks. The DScore model may also have a 
broad appeal, with potential outcomes easily publishable in daily newspapers and on the 
internet, with the relevant draft permutations providing a motivator not only for the 
club, but for the supporters alike. 
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ABSTRACT 

In financial markets, the price movements of shares are often modelled as following 
Brownian motion. The score difference in a sporting contest can often be seen to move in 
much the same way. This paper shows how Australian Rules football in particular satisfies 
the assumptions needed to implement a Brownian motion model. Such a model can be used 
to estimate a team’s chance of winning a match that is already underway. It is shown how 
one can estimate the probability of a team winning at any time during the match using only 
the bookmaker’s line, current score and time of the match remaining as the inputs. As an 
example, the 2005 AFL Grand Final is discussed illustrating the random walk and how the 
estimated probability of winning varies over time. Some applications to sports betting are 
presented, including actual results from two seasons of betting using probabilities generated 
from the model.  

 

KEYWORDS 

Australian Rules football, Brownian motion. 

 

INTRODUCTION 

During an Australian Rules football match, the chance of a team winning depends primarily 
on the score difference and the time remaining in the match. The purpose of this paper is to 
present a simple method for estimating the in-game chance of a team winning a football 
match. 

Australian Rules football is the dominant spectator sport in the southern Australian states, 
and a typical Australian Football League (AFL) match draws over 30,000 spectators. A 
team score in two ways, either by scoring a goal-worth six points, or a behind-worth one 
point. In the 1480 matches from 1998 to the end of 2005, 28.0 goals and 23.8 behinds were 
scored on average per match with an average absolute winning margin of 34.4 points. For a 
more detailed description of the sport see Stefani and Clarke (1992). 

The progress of the lead during a match can be charted as shown in Figure 1. The line 
moves up and down somewhat randomly with the vertical jumps corresponding to scoring 
events. Similar patterns have been observed in various phenomena, such as the movement 
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of the price of a stock, or the motion of a speck of dust across a room. This type of process 
is known as a random walk.  
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Figure 1: The score progress of and Australian Football League match, in this case, the 

2005 grand final between Sydney and the West Coast Eagles 
 

If the number of steps in the random walk is sufficiently large, guided by the central limit 
theorem, a random walk approaches Brownian motion. Brownian motion is a continuous 
process, and is easier to analyse than the more general random walk. It is described by two 
parameters; the variance, and drift. The ubiquitous Black-Scholes equation in finance 
(Black and Scholes, 1973) is perhaps the most famous application of Brownian motion for 
predictive purposes. 

Stern (1994) first considered a Brownian motion model to provide in-game estimates of the 
chance of winning baseball and basketball games. Even for baseball, a relatively low 
scoring sport, the model provided promising results. This paper extends Stern’s work to 
AFL matches, and also incorporates any prior beliefs of difference in skill between the 
teams. AFL is particularly suited to this type of continuous analysis because it is high 
scoring, particularly when compared to baseball. 

 

METHODS 

First, transform the time elapsed during the match, where  )1,0(∈t  is the fraction of the 
match has been completed. Quarter breaks naturally occur at t=0.25, 0.5, and 0.75. Scores 
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are most commonly reported at these quarter breaks, although this model has the ability to 
make predictions continuously over the entire interval. 

Let X(t) represent the score difference between two teams at time t. The sign of X(t) 
indicates who is leading the match. If X(t)>0, then Team 1 is leading. Team 2 is winning if 
X(t)<0. Finally, if X(t)=0, the scores are level. Let’s now assume that X(t) can be modelled 
as a Brownian motion process with drift, µ,  and variance, σ 2 per unit time. µ can be 
thought of as the difference of skill between the teams measured in points over an entire 
match. If, for example, our estimate of µ is 10 points, then on average the home team will 
win by 10 points. The variance, 2σ , is a measure of the uncertainty, or “luck”, involved in 
the football game.  

Brownian motion is closely related to the Normal distribution, hence X(t) can be described 
as 

),(~)( 2ttNtX σµ               (1) 

Therefore, at the start of the match, the estimated probability of Team 1 winning the match, 
given skill difference, µ and standard deviation, σ  is 

Pr(X(1) > 0) = Φ
µ
σ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ,                          (2) 

whereΦ is the CDF of the standard normal distribution. This expression is closely related 
to the ordered probit model proposed by Brailsford et al. (1995) for analysing Footybet 
scores (where gamblers try to pick which point margin the scores will fall). 

Once the match is underway, we can now use the Brownian motion model to estimate 
Team 1’s chance of winning. Here, 

Pr(X(1) > 0) = Φ
l + (1− t)µ
σ (1− t)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟                         (3) 

where l is the current lead in points of Team 1. The probability of Team 2 winning is 
simply the complement of (3). 

 

For reasons of simplicity, draws have been ignored so far, but can be incorporated into the 
model as follows. Here the continuity correction proposed by Stern (1994) is used, where it 
is assumed that the observed difference in scores is X(t) rounded to the nearest integer. 
Therefore the estimate of the probability of a draw is given by 
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Bookmakers offer other bets based on the final margin of the match. For example, the 
probability that Team 2 wins by more than 39.5 points can be calculated by 
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⎟
⎠
⎞

⎜
⎝
⎛ +

Φ−=−<
σ

µ5.391)5.39)1(Pr(X .              (5) 

Similar calculations can be made to estimate any other offered point margin bets. 

 

RESULTS 

Prior to using the model, we need to estimate the parameters µ and σ  for each match. Stern 
(1994) uses a global home ground advantage for all teams as an estimate of µ. A more 
accurate estimate can found be by using a ratings algorithm such as that described by 
Stefani and Clarke (1992). Another method, the one used here, is to use the lines provided 
by bookmakers for each match as an estimate of µ. 

The standard deviation, σ , can also be estimated by utilising information provided by 
bookmakers. Bookmakers express the chance of a team winning in two ways, odds and 
lines. The line gives an estimate of µ, and the odds provide Pr(X(1)>0) . By rearranging (3), 
one can estimate σ  for a given line and odds, (provided that 0≠µ  ). Generally for AFL 
matches, 38ˆ =σ  provides an adequate fit between the bookmakers’ lines and odds. It is 
possible that σ  may vary between matches due to weather conditions, but for the purposes 
of this paper it is assumed to be constant since varying σ  by a few points either way does 
not appear make large differences in predictions. 

The Brownian motion model requires some assumptions for it to be effective. To check 
these assumptions, first define the error for the bookie’s line for the entire match as 

ε = X(1) −µ .               (6) 

Likewise, for the first quarter, the error is 

4
)25.0(1

µε −= Xq ,             (7) 

and the second quarter 

4
)25.0()5.0(2

µε −−= XXq .             (8) 

43  and qq εε  are calculated similarly. 

For our model to be valid, the errors should not be significantly correlated, their standard 
deviations should be equal, and they should be normally distributed. These assumptions 
ensure that µ and σ  remain stationary over the course of the match, and that the normality 
assumption of the Brownian motion model holds. For testing purposes, a database of 1480 
matches from 1998 through to the end of the 2005 season was used. Recorded data for each 
match includes the bookies odds and line prior to the start of the match, the final score, and 
the score at each quarter break. 

Figure 2 shows a histogram and density plot of ε for all 1480 matches. The striking part of 
this chart is the almost perfectly bell-shaped curve of the distribution. A Shapiro-Wilk test 
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confirms the validity of the normality assumption (n=1480, W = 0.9988, p = 0.4167). 
Despite the discrete nature of the scoring (1 and 6 point increments), the many scoring 
shots within a match ensure that ε approaches normality. Likewise, for each individual 
quarter, the errors about ε/4 appear normal (None are significantly non-normal at the 0.05 
level). 
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Figure 2: Histogram and density plot of the error in the bookies’ line, )(ε . The bell-shaped 

curve highlights the normality of the errors. 

Table 1 contains the mean and standard deviations for each of the ε’s. If ε is unbiased then 
the errors for each quarter should be equal to zero. Note that they are all positive here. This 
is not an artefact of our model but indicates there is some bias in the bookies’ line. The 
most likely reason for the bias is because the bookmakers underestimate the size of the 
home ground advantage. 

Table 1: Mean and standard deviation for the errors around the bookies line for all quarters. 

Variable Mean (std err) Standard deviation 
1qε  0.97 (0.44) 16.75 

2qε  0.45 (0.45) 17.20 

3qε  1.07 (0.46) 17.81 

4qε  0.48 (0.46) 17.66 
ε  2.97 (0.98) 37.50 

Another key assumption of the model is that variance remains stationary over the course of 
the match, ( ) ( ) ( ) ( )( )4321 VarVarVarVar is,that qqqq εεεε === . We can test whether at least 
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one pair of variances is different through Bartlett’s test for homogeneity of variance. For 
these data, Bartlett’s test (Bartlett's K2 = 6.8775, df = 3, p = 0.0759) shows that assuming 
equal variances is not unreasonable here. 

 

Commentators often describe one end as the “scoring end”, usually due to a strong wind 
blowing in that direction. The strength of this effect has never been quantified. If this was a 
general effect there should be positive correlation between 31  and , qq εε , and also between 

42  and , qq εε . The Brownian motion model assumes there are no obvious correlations 
between any of 4321  and , , , qqqq εεεε . Table 2 presents the correlation matrix with 
associated p-values. The correlations are reasonably small. At the 1% level of significance, 
only the correlation between the third and fourth quarters is significant (positively). One 
possible explanation for this correlation is that teams give up when they are behind by a 
large margin. There is also some evidence of correlation between other quarters, although 
more detailed research needs to be undertaken to conclude whether the scoring end effect 
exists. Although the correlation between quarters does give some doubt as to the adequacy 
of the Brownian motion model, it appears the model still fits well when used as a predictive 
model. 

Table 2: Correlation matrix of the errors for each quarter. P-values are in brackets. Under 
the Brownian motion model, the correlations are assumed to be negligible. 

 1qε  2qε  3qε  4qε

1qε  1    

2qε  -0.0056 (0.829) 1   

3qε  0.0591 (0.023) 0.0503 (0.053) 1  

4qε  0.0456 (0.080) 0.0669 (0.010) 0.1122 (<0.001) 1
 

Finally, to assess the adequacy of the model, we can compare the standard deviation of ε, 
with the value of σ used to fit the model. From Table 1, sd  (ε) = 37.5 compared to σ=38. 
The closeness of these values indicates the model is representative of the data. 

 

DISCUSSION 

Having taken the steps to fit a predictive model in the previous section, implementing the 
model to produce meaningful predictions comes is the next step. Take, for instance, a 
hypothetical match where Team 1 are 20 point favourites (µ=20). Figure 3 summarises 
predictions for Pr(X(1)) as a set of contour lines, where each contour line represents a 
particular lead. So if scores are level we use the lead=0 contour line. At the start of the 
match Team1 has approximately 70% chance of winning, but if they are still level at half 
time the chance of winning is only 65%. As each team scores, we jump to a different 
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contour line corresponding to the lead at that time. Note that as t approaches 1, even a small 
lead means victory becomes assured. 
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Figure 3: A plot to estimate a team’s chance of winning at any time during the match. In 

this example 20=µ  points. Each contour line represents a particular lead. 

Figure 4 shows how the model can be applied in real-time to an actual match, in this case 
the 2005 grand final between Sydney and West Coast. According to the bookies this was an 
even contest so we take 0=µ . The two charts illustrate a number of features of the 
Brownian motion model. Early in the match, each score causes a small difference in the 
estimated outcome, but as time progresses each score becomes more and more important, 
especially as the match is close. A simple program or Excel spreadsheet can be made to 
provide these estimates while the match is in progress. 

One downfall of this model is that for close matches such as this grand final, the model 
doesn’t take into account the discrete nature of scoring late in the match. For the last few 
minutes of the match the model predicts Sydney to be almost certain winners even though 
most observers of the match would conclude that the match was still in the balance. As it 
turns out, Sydney did in fact win the match, despite several last ditch attacking moves by 
West Coast. 
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Figure 4: The 2005 grand final revisited. The top panel shows the progress of the score, 

whereas the bottom panel provides estimates of Sydney winning the match as time 
progresses )38,0( == σµ . 

Predicting the outcome of the match in progress is of more use than just to satisfy curiosity. 
Many Australian bookmakers offer “in-the-run” betting, where they offer odds of a team 
winning while the match is in progress. If a model, such as the one outlined in this paper, 
can make more accurate predictions than the bookies, an astute bettor can profit by betting 
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on teams which the model estimates have a greater chance of winning than is reflected in 
the odds. 

Figure 5 shows the bankroll growth for 206 actual bets made over the course of the 1999 
and 2000 AFL seasons at a major Australian bookmaker. The average return on turnover 
was 16% at average odds of $2.35. These bets are part of a larger sample of bets made at 
other bookmakers, with similar results to those reported here. Estimates were made using 
the Brownian motion model and bets were sized roughly according to the Kelly criterion 
(see Kelly (1956) and Epstein(1977)) to maximise the long-run growth rate.  
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Figure 5: Bankroll growth from betting “in-the-run” at a major Australian bookmaker over 

the 1999 and 2000 seasons using the Brownian motion model. 

The vast majority of advantageous in-the-run bets were on the pre-game underdogs leading 
during the match. It appears that the general public and the bookies who set the odds 
overestimate the chances of pre-game favourites winning when they are trailing during the 
match. The success of a mathematical model in this situation can be partly attributed to the 
complexity of analysing the in-the-run betting markets. Benter (1994) notes that advantages 
are more likely to be gained by mathematical models in more complicated betting products. 
The complexity in setting odds for in-the-run markets is high and the bookmaker has severe 
time constraints when choosing the odds during a match with a rapidly changing score. A 
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model, such as the one described in this paper, takes away much of the need for human 
judgement. 

 

CONCLUSIONS 

Sports commentators often make comments about how likely a team is to win while the 
match is in progress. This paper introduces the Brownian motion model as a simple way of 
quantifying these predictions. What was once a “miracle comeback” could now be a 
“comeback from having less than 5% chance of winning at half time”. The Brownian 
motion model is not necessarily the most accurate way to make predictions during a game, 
but it outperforms estimates given by bookmakers. One other possible method for 
predicting in-game probabilities is to apply a probit regression to each quarter using 
relevant predictors. While this method may end up being more powerful, it lacks the 
elegance of the Brownian motion model and requires more information to fit.  
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POSSESSION VERSUS POSITION: STRATEGIC EVALUATION IN AFL 
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ABSTRACT 
In sports like Australian Rules football and soccer, teams must battle to achieve 
possession of the ball in sufficient space to make optimal use of it. Ultimately the teams 
need to score, and to do that the ball must be brought into the area in front of goal – the 
place where the defence usually concentrates on shutting down space and opportunity 
time. Coaches would like to quantify the trade-offs between contested play in good 
positions and uncontested play in less promising positions, in order to inform their 
decision-making about where to put their players, and when to gamble on sending the 
ball to a contest rather than simply maintain possession. 

To evaluate football strategies, Champion Data has collected the on-ground locations of 
all 350,000 possessions and stoppages in the past two seasons of AFL (2004, 2005). By 
following each chain of play through to the next score, we can now reliably estimate the 
scoreboard “equity” of possessing the ball at any location, and measure the effect of 
having sufficient time to dispose of it effectively. As expected, winning the ball under 
physical pressure (through a “hard ball get”) is far more difficult to convert into a score 
than winning it via a mark. We also analyse some equity gradients to show how getting 
the ball 20 metres closer to goal is much more important in certain areas of the ground 
than in others. We conclude by looking at the choices faced by players in possession 
wanting to maximise their likelihood of success. 

 

KEY WORDS 
notational analysis, Australian Rules football, tactical coaching 

 

INTRODUCTION 
Australian Rules Football (informally known as “AFL” after the Australian Football 
League) is played with an oval ball on an oval field at high speed, leading to it 
sometimes being called “What Rules?” by the unschooled observer. Compared to more 
structured football codes such as American football or rugby league where a “phase of 
play” always starts in a simply-defined formation, the free-flowing nature of Australian 
football creates extra dimensions for analysis. This paper describes the qualitative 
framework for evaluating the phases of AFL and presents empirical interpretation of 
data from the 2004 and 2005 seasons. 

AFL coaches are clamouring for this sort of analysis to inform their strategies and 
training procedures. They know that being in possession of the ball is important, but this 
research can show exactly how much it’s worth on the scoreboard to take a contested 
mark, compared with someone from the opposition grabbing the loose ball spilled from 
the pack. They also know that position is important. They must create opportunities in 
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positions near goal, but their players often have to choose whether to aim at a riskier 
proposition close to the goalmouth or maintain possession in a worse position. Dynamic 
programming based on empirically derived parameters can answer this dilemma. 

Dynamic programming was first applied to AFL (Clarke and Norman, 1998) to answer 
the question of whether players should concede a point on the scoreboard in order to 
gain clean possession afterwards. A new thesis (Forbes, 2006) based on Champion 
Data’s statistics uses a Markov model approach to map out the probabilities of 
transitions between AFL’s phases to predict scoreboard results. 

American football, where position is effectively one-dimensional and there are only four 
phases – the “downs” – has been analysed using dynamic programming in a famous 
paper (Romer, 2002), and a rating system (Schatz, 2005) called DVOA (Defence-
adjusted Value Over Average) evaluates actions with respect to a model of scoreboard 
value similar to the one created in this paper. The fast-flowing and open sport of ice 
hockey has recently been modelled using a “semi-Markov” approach (Thomas, 2006). 

The modelling undertaken here is largely exploratory – this is a mass of new data which 
requires further detailed research. 

 

METHODS 

Match Equity and Field Equity 
Various authors have employed a plethora of terms to describe the expected value of 
actions on sporting fields. Studeman (2004) describes the repeated reïnvention and 
relabelling of “Win Probability Added” in baseball. Bennett (2005) has a good simple 
description of how to value an action that alters the probability of winning the match. 

The terminology we use in this paper is derived from the theory of backgammon (Keith, 
1996), a game in which the players compete to win points, the first to n points winning 
the match. We assume teams of equal strength, although much of the reasoning below is 
still valid for uneven teams. Match Equity is the probability of the team to win the 
match from this moment, or more specifically: 
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The Match Equities of each team in the contest sum to one. A team is always aiming to 
increase its Match Equity until it reaches one – certain victory. I.e., it is looking for 
actions which maximise ∆EM, or at the very least have ∆EM ≥ 0. As noted in Equation 1, 
Match Equity is a function of four parameters: 

• the score margin, m 

• the time remaining in the match, t 

• the position on the field, x 

• the possession state or phase of play, ϕ   

AFL typically has about 50 scores in a match of 80 live minutes. We define styp as the 
typical score of a game (in AFL’s case, the goal worth 6 points is dominant), and ttyp as 
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the typical time between scores (approximately 100 seconds in AFL). We can roughly 
decouple the first two parameters from the others by noting that if we discard any 
knowledge of x or ϕ , we can build a satisfactory model of winning probability based 
only on the time remaining t and changes to the margin m. The phase and location 
information can be treated as a perturbation of the match-winning probability model EM. 

To model the net potential value on the scoreboard of the current state of play, we 
introduce Field Equity: 
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where 

• si is the value of the ith type of score 

• pi,q is the probability of the next score being of type i by team q 

The Field Equities of each team in the contest always sum to zero. The Field Equity 
fluctuates as play progresses until either team scores, at which team it precipitates an 
actual change to the margin m and EF is reset to zero. AFL has two different restart 
phases, one being a centre bounce after a goal (where obviously each team has equal 
chances and EF = 0), the other being a kick-in from the goalmouth after a behind. 
Remarkably, empirical evidence suggests that the average team has zero residual equity 
in the behind restart phase (see Table 1 in RESULTS). 

Changes to Match Equity, Decoupled 
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The “Pressure Factor” multiplier Π is the impact an instantaneous change to the margin 
would have on the match-winning chances of the teams. Empirically, kicking the first 
goal in an evenly-matched contest increases EM from 0.50 to about 0.56. The 
decoupling transfers the potential held in the field position into improved match-
winning probability. It allows us to assume that a team that increases EF to +2 soon after 
the start of a game increases its match-winning probability to about 0.52, but if only a 
quarter of the match is left and m = 0, ∆EF of +2 could imply ∆EM of +0.04, from 0.50 
to 0.54. A detailed formula for Π is beyond the scope of this paper. Henceforth the term 
“equity” (E) will refer to Field Equity and we will assume the time remaining is 
effectively unlimited. 

The decoupling assumption only breaks down when both t and m are of the order of ttyp 
and styp respectively – i.e., when the game goes down to the wire, the added quantum of 
a major score could be the difference between a win (EM = 1) and a loss (EM = 0), and 
the time left on the clock must be considered. 

Data Collection 

Champion Data has been logging qualitative AFL statistics by computer since 1996. All 
statistics are classified live by a caller at the venue, connected by phone to a reviewer 
watching a monitor, and a data entry operator. Traditionally, AFL statisticians had only 
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captured the numbers of kicks, marks, handballs, and scores for each player. The system 
introduced in 1996 imposes a structure on the flow of play, so that every disposal or use 
of the ball must be preceded by a “possession”. 

We need to be able to say which player is in possession, in which circumstances he got 
the ball, where he was on the field, how much time he had to think once he got it, a 
rough idea of what his options were, which option he chose, and whether he 
successfully executed his choice. Each of these events has to be put in context, with 
respect to what happened before and after the ball was in his control. The data capture 
software executes a model of the sport, which only allows certain events to take place in 
certain circumstances. Every statistic is time-coded, and since 2004 all possessions are 
given a position on the field by an independent operator whose sole responsibility is to 
pinpoint the location of the ball on a map of the field for each of these 1000 data points 
per match. 

Testing has shown that the quantity of statistics for each player is logged at better than 
99% accuracy, time is accurate to within about five seconds, and position to within 
approximately 5-10 metres. 

AFL Phases of Play 
Possession of the football has been qualitatively stratified to become the descriptive 
framework of AFL’s Phases. Phases of Play with a team in possession include: 

• Mark. The player has caught the ball from a kick and according to the rules is entitled 
to consider his options without being tackled. 

• Handball Receive. The player has received a handball from a teammate, uncontested. 

• Loose Ball Get. The ball has indiscriminately spilled loose and a player has been in 
the right place to pick it up. 

• Hard Ball Get. The player has taken usable possession of the football while under 
direct physical pressure from an opponent. 

Play can also be in an active neutral phase, after a smother of the ball or a similar 
random collision. There are also passive neutral phases where the umpire holds the ball, 
before launching it back into play. Lastly there are a couple of set-play phases such as a 
kick-in after a behind. 

For the purposes of this paper we will consider five Phases of Play, which experience 
and analysis have shown cover most important facets of AFL: 

• “Set” (approximately 35% of possession is granted this way). A player has taken a 
mark or received a free kick, or has been given another set-play role. He has an 
optimal amount of time to consider options and make the right choice. We will ignore 
kick-ins from goal in this paper. 

• “Directed” (approx 38%). The ball was directed into the player’s possession by a 
teammate, either via a handball, a kick to the player’s advantage without achieving a 
mark, or a knock-on or hit-out intended for the player. Generally the player has space 
to run onto the ball and some time to make a good decision. 

• “Loose” (approx 17%) - Player won a virtually random ball via a loose ball get, and 
while he is not yet under physical pressure there is little time to evaluate the situation. 
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• “Hard” (approx 10%) - Player won the ball under direct physical pressure and often 
must take the quickest option available to avoid being caught with the ball. 

• “Umpire” - Umpire has the ball and restarts play with equal chances for both teams. 

We have ignored quasi-possession states like knock-on, hit-out and kick off the ground 
for this paper. A full description of Phase of Play would also include extra dimensions 
such as: how fast the ball travelled to where it is (catching the defence napping, for 
instance); who is currently on the field (is it the best 18 players available?); what 
formation the team is playing (flooding the backline to reduce the odds of uncontested 
ball near the opposition’s goal). 

Assumptions 
AFL is regularly played at a dozen different venues, each with slight variations from the 
ideal oval shape and various lengths and widths. The shortest ground is the SCG at 
148.5 metres, meaning that the 50m-wide centre square touches the 50m arcs at each 
end of the ground. At Subiaco in Perth, on the other hand, there are 175.6 metres 
between the goal-lines and therefore 12.8 metres of territory between the top of the arc 
and the centre-square. When plotting locations, it is important to note that some areas of 
the ground simply don’t exist at some grounds, and that the wings are much wider at the 
SCG (length:width ratio of 1.09:1) than Geelong (1.47:1). 

The positional capture software assumes that every ground is a perfect ellipse, and only 
the lengths of the axes vary, so the operators can accurately pinpoint play. For analysis, 
we use the MCG (160 × 138 metres) as the standard ground and transform the other 
venues into this shape to utilise their data. This transformation preserves fixed areas of 
the ground such as the centre-square, boundary and the corridor leading to goal, while 
distorting distances and angles in other regions. We will always show teams attacking 
the goal to the right of the page. Contour maps have been generated using 
ComponentOne Chart3D v8. Other diagrams have been designed by the author. 

An implicit assumption in the equity model is that the expected value of the next score 
is a good measure of the current phase of play, no matter how many minutes in the 
future that score may be. This has advantages over a Markov Model in that we do not 
assume that future states are exactly classifiable, instead there may be subtle 
repercussions of actions which are evident further down the track and should not be 
washed away by repeated normalising. Coaches value the players who can see three or 
more moves ahead, and don’t just look for an easy option in front of them. The 
disadvantage of the equity approach is that the further we go from the source phase, the 
less relevance it has to the developing play, as more randomness floods in. Standard 
error measurements are quite high because of the number of data points ignored. 

Method of Calculating Estimated Equity 
For each data point, the value of the next score has been noted. This could be +6 (a goal 
for this team), +1 (a behind for this team), -1 (a behind for the opposition), or -6 (a goal 
for the opposition). Data points are excluded from analysis if there is no further scoring 
in the quarter. An example appears in Tables 1 and 2 at the start of the RESULTS 
section below. It has been assumed that left/right and north/south biases are 
inconsequential, so the standard ground has been folded down the spine and data points 
from each half are analysed together. 
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We have used two different positional filters in this paper. The contour graphs are 
generated using a six metre square grid. All points within a six metre radius of the 
vertex are taken into account in the calculation, meaning that each point appears in 
roughly three map points – this is an attempt at smoothing, knowing the natural 
sampling error in the data. Parts of the map with insufficient data (fewer than ten points 
in the disc or an equity standard error of greater than 0.5) are shown blank. Where we 
want to measure true statistical deviations and start to develop a model, the zones must 
not overlap. The semi-ellipse (remembering that the ground has been folded along its 
spine) is divided into 200 zones of equal area. First the length-wise (X) axis is divided 
into 25 sections to segment the ellipse into 25 equal areas. Then seven curves are drawn 
equidistant from each other, between the spine and the boundary to cut each strip into 
eight zones. 

Error figures presented are two standard errors (95% confidence) except where noted. 

 

RESULTS 
Table 1 has a simple example of how to estimate the scoreboard value of two well-
defined phases: after a goal, and after a behind. This is Summarised in Table 2. 

Table 1: How to Calculate Estimated Equity 

 Team Scored a Goal, Centre 
Bounce follows 

Team Scored a Behind, 
Opposition will Kick-In 

Event Count 31236 26160 

Discard (no further score) 2376 2064 

Team Goal (+6) 8340 7045 

Team Behind (+1) 6823 5803 

Opposition Goal (-6) 7435 6065 

Opposition Behind (-1) 6262 5183 

Sum of Next Scores 5991 6500 

Sum of Squares 580985 482946 

Equity Mean Estimate 0.208 0.270 

Standard Error in Mean 0.026 0.029 

 

Table 2: Residual Equity in Restart Phase as measured in seasons 2000-2005 

After scoring a goal Measured EF   +0.21(5) 

After scoring a behind Measured EF   +0.27(6) 

 

The measured residual equity in real matches is non-zero since the stronger team is 
more likely to be the scorer of both the previous and the next score. It appears irrelevant 
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whether the restart is via the umpire in the centre of the oval, or via a player kick-in at 
the end of the ground (95% confidence interval for the difference: [-0.02, +0.14]). 

Equity Maps 
The value of taking a mark and having a set shot at goal directly in front can be seen in 
this map, with an expected value of more than four points extending all the way out to 
about 40 metres from goal. A free kick within 25 metres makes the goal a virtual 
certainty. The tight bunching of contour lines from 40 to 60 metres out along the spine 
shows the natural limit of an AFL footballer’s kick, being about 50-55 metres. To get 
within one kick of goal, and have the time to execute it, is extremely valuable. 

 

 
Figure 1: “Set” Phase Contour Map 

“Directed” (Figure 2) is the second-best phase for a footballer to receive the ball in. 
Usually he has received a handball in some space and should be able to execute his 
preferred option. But often he will have to take critical time to swivel as the defence 
closes in, and it’s only within ten metres of goal that the maximum six points can almost 
be assumed. The gradient we saw at 40-60 metres in Figure 1 is completely missing 
here, showing the greater difficulty of a snap shot on the run – the attacker wants to be 
within 30 metres.  
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Figure 2: “Directed” Phase Contour Map 

 
Figure 3: “Hard” Phase Contour Map 

An utterly different picture (Figure 3) awaits the player who faces the extreme pressure 
of a hard ball get. Even within ten metres of goal the expected scoreboard outcome is 
just 3.5 points. Equity is below zero for the entire defensive zone, but interestingly there 
is a peak at the top of the forward arc, indicating that perhaps this is one place on the 
ground where he has two reasonable areas either side of him to shoot out a handball and 
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find a teammate who suddenly has options within range of goal. This circumstance 
often happens after the centre bounce when a quick kick lands at the congested top of 
the arc with the opposition still rushing the centre square. 

 
Figure 4: Advantage of “Set” over Opposition “Set” 

This shows clearly the “hot spot” favoured by AFL coaches. There is volatility of more 
than six points in contesting a mark or winning a free kick twenty metres out directly in 
front of goal, rather than letting your opponent have the same.  

 
Figure 5: Advantage of “Set” over “Directed” 
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Also of interest is how cool the wings are – an equity swing of less than 2.5 points for 
taking a mark over his opponent, as neither player can directly make use of the extra 
time. A kick from a set shot near the boundary will often travel straight down the 
boundary to a settled pack, which is very low in volatility. 

 

  
Figure 6: Significance Test: “Set” versus “Directed” 

Calculated as an average over the ground, there is only a boost of 0.3 points to be 
gained by taking a mark instead of receiving a handball. In modern football uncontested 
marks across the half-back-line are cheap, with the opponent barely interested in forcing 
the man to go back and take the set shot. But the advantage is wholly concentrated in 
the forward-50 arc, with an extra 1.5 points available on the scoreboard for having a set 
shot rather than a running shot at goal between 25 and 45 metres out. The light areas on 
Figure 6 show the regions where it is significantly better, at the two-sigma level, for a 
player to take a mark rather than gather it uncontested. 

 

Average Phase Equity 

The mean net value of each of the phases was calculated by averaging over the 200 
zones on the field. This works as a “standard candle” to investigate deviations by teams 
or in certain situations. 

A Player’s Choices: What Happens Next 
Imagine a player who has just taken a mark 70 metres out from goal, on about a 40°-45° 
angle. It’s unlikely he can score himself, and he faces an unenviable choice between 
bombing it long in hope of improved field position without turning the ball over, or 
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picking out a nearby teammate to do the dirty work for him. This scenario – within six 
metres – has played out 822 times over the seasons 2004-2005. On average, a team in 
this position can expect to convert to about two points on the scoreboard (2.06(14)). 

Table 3: Equity of Possession Phases, Averaged Over Field 

Phase Mean Equity Comments 

Set +1.61(2) Being awarded a free kick in the centre circle is worth more 
than 1½ points on the scoreboard 

Directed +1.32(2) About half-way between Loose and Set, this Phase tends to 
show up the good decision makers 

Loose +1.11(2) Even if the options aren’t great, it’s still worth more than 
two points on the scoreboard to be in the right place instead 
of his opponent 

Hard +0.80(3) Half the value of a set shot, compared to a 50/50 Phase 

 

It’s immediately obvious from Figure 7 below that if the player passes short and keeps it 
near the boundary, he almost always finds a teammate. Even more encouragingly, the 
team scores from there virtually every time. On the other hand, directing the ball long 
into the central corridor seems to be about a 50/50 proposition to hold onto the ball. Is it 
worth the risk? And should he play on, relinquishing the set shot time to gain some 
ground by running? Figure 7 shows the results of the 195 marks at the MCG from this 
position.  

 
Figure 7: Mark on the MCG Half-Forward Flank 



 237

Showing all venues made the picture too crowded. The grey speckle in the lower left is 
the collection of points where a player marked. The plus signs (+) show where he 
managed to get the ball to a teammate, while the dark squares are immediate turnovers. 
The grey circles indicate the ball went into the umpire’s control. A ring around the 
marker means that the next score was to the opposition – no ring indicates a score for 
the marking player’s team. The nine diagonal slashes are the rare occasions that the 
player managed to run to this point and scored for himself. 

The results are inconclusive, but they do highlight the dilemma. By choosing to 
handball, his team keeps the ball 97% of the time. With a short kick (gaining less than 
35 metres or not moving closer to goal), the retention rate is 78%, but just 48% with a 
long kick. And yet the improved position gained from the long kick is worth the risk: a 
slightly higher equity as more of the scores are goals. 

Table 4: Choices from a Mark (All Venues), 70 metres out on a 40-45 degree angle 

Choice: Handball Kick 35m+ Kick <35m Play On Wait 

N (%) 116 (14%) 382 (47%) 319 (39%) 347 (42%) 475 (58%) 

Teammate 97% 48% 78% 73% 62% 

Umpire 1% 14% 5% 8% 9% 

Turnover 3% 37% 17% 19% 29% 

Next Score 78% 77% 80% 81% 76% 

Equity 2.08(35) 2.15(21) 1.96(21) 2.21(20) 1.95(18) 

(All errors are one standard error) 

Players who waited rather than played on saw the defence coalesce around their options 
and could only find a teammate 62% of the time, for a slightly lower equity result. It 
should be noted that some of these would not have had the choice to play on, due to a 
close opponent or falling to ground after the mark. 
 

DISCUSSION 
Players and fans understand the scoreboard. Telling them that giving the won ball to the 
opponent at this point on the field is effectively taking three points off the scoreboard is 
a strong message, and should foster a new way of thinking about the game. 

It has long been noticed that defenders have higher “kicking effectiveness” percentages, 
a measure of how often they find a teammate as a percentage of total kicks. The pictures 
in this paper make it obvious why – there is little pressure on them, and a wealth of 
options to hit. There is an implicit “funnel” in many team sports due to the location of 
the goals – trying to kick into the neck of the funnel at centre-half-forward is very risky, 
but as seen by the equity gradient also very rewarding if the team has strong marking 
forwards in the corridor. It is much easier to advance along the gentle equity gradient in 
the back half of the ground, the funnel gaping open as teammates have more space to 
run to. The next step is to identify clubs’ equity signatures, and find out where they are 
breaking down compared to the league standard. Where do they mostly direct the ball? 
Sydney are known to hug the boundary, but can this tactic be exploited? 



 238

CONCLUSION 
This is just a first look at a huge body of data which is ready for exploitation by AFL 
researchers. Even these preliminary results are informing AFL coaches about the risks 
and rewards associated with some patterns of play. Future directions include looking at 
the effect of speed of play on equity – how much of an advantage is it to be able to 
advance the ball quickly? Or should the players switch play across the ground to exploit 
open space? A semi-Markov approach as advocated for ice hockey (Thomas, 2006) 
could also be useful, to reduce the number of data points needed for conclusive 
evidence of strategic advantage. Following the lead of baseball, an application to player 
ratings would be a significant opportunity. Identifying which players consistently 
increase equity for their team is a major goal. 

 

Acknowledgements 
The author would like to thank the dedicated Champion Data data-capture staff who 
methodically logged the 350,000 data points used in this analysis. 

 

REFERENCES 

Bennett, J. (2005) World Series Player Game Percentages. Statistics in Sports section of 
the American Statistical Association. Available from URL: http://www.amstat.org/ 
sections/sis/pgp/ 

Clarke, S.R. and Norman, J.M. (1998) When to rush a behind in Australian Rules 
football: a Dynamic Programming approach. Journal of the Operational Research 
Society 49(5): 530-536. Available from URL: http://www.swin.edu.au/lss/staff/ 
staff_bios/s_clarke/Chapter8.html 

Forbes, D.G. (2006) Dynamic prediction of Australian Rules football using real time 
performance statistics. Ph.D. Thesis submitted to Swinburne University. 

Keith, T. (1996) Backgammon Glossary. Backgammon Galore. Available from URL: 
http://www.bkgm.com/glossary.html#equity 

Romer, D. (2002) It’s Fourth Down and what does the Bellman Equation say? A 
Dynamic-Programming Analysis of Football Strategy. National Bureau of Economic 
Research Working Paper 9024. Available from URL: http://www.nber.org/ 
papers/w9024 

Schatz, A. (2005) Methods to our Madness: DVOA Explained. Football Outsiders. 
Available from URL: http://www.footballoutsiders.com/methods.php 

Studeman, D. (2004) The One About Win Probability. Hardball Times. Available from 
URL: http://www.hardballtimes.com/main/article/the-one-about-win-probability/ 

Thomas, A.C. (2006) The Impact of Puck Possession and Location on Ice Hockey 
Strategy. Journal of Quantitative Analysis in Sports 2(1), Article 6. Available from 
URL: http://www.bepress.com/jqas/vol2/iss1/6 



 239

AN ANALYSIS OF TEN YEARS OF THE FOUR GRAND SLAM MEN’S SINGLES 
DATA FOR LACK OF INDEPENDENCE OF SET OUTCOMES 

 
Pollard, G.1, Cross, R.2 and Meyer, D.3 
 
1Faculty of Information Sciences and Engineering, University of Canberra, Australia 
2Physics Department, Faculty of Science, University of Sydney, Australia 
3Faculty of Life and Social Sciences, Swinburn University of Technology, Australia 

 
ABSTRACT 
 
The objective of this paper is to use data from the highest level in men’s tennis to assess 
whether there is any evidence to reject the hypothesis that the two players in a match have a 
constant probability of winning each set in the match. The data consists of all 4883 matches 
of grand slam men’s singles over a 10 year period from 1995 to 2004. Each match is 
categorised by its sequence of win (W) or loss (L) (in set 1, set 2, set 3,...) to the eventual 
winner. Thus, there are several categories of matches from WWW to LLWWW. The 
methodology involves fitting several probabilistic models to the frequencies of the above 
ten categories. One four-set category is observed to occur significantly more often than the 
other two. Correspondingly, a couple of the five-set categories occur more frequently than 
the others. This pattern is consistent when the data is split into two five-year subsets. The 
data provides significant statistical evidence that the probability of winning a set within a 
match varies from set to set. The data supports the conclusion that, at the highest level of 
men’s singles tennis, the better player (not necessarily the winner) lifts his play in certain 
situations at least some of the time. 
 
KEY WORDS 
 
data analysis, independence in tennis, constant probabilities, psychological development 
 
INTRODUCTION 
 
Several authors have carried out probabilistic analyses of tennis (Carter and Crews, 1974; 
Miles, 1984). A common assumption is that player A has a constant probability PA of 
winning a point on his/her service and that player B also has a constant probability PB of 
winning a point on service. Under this assumption and the assumption that points are 
independent, it can be shown that the better player does not always win and that each player 
has a constant probability of winning each set, no matter who serves first in the set (Pollard, 
1983). Player A is the better player if PA is greater than PB. 
 
There is little published research on testing whether players do have constant probabilities 
on service, that points (and hence games and sets) are independent and identically 
distributed (iid). A ‘first game effect’ in a match, namely that fewer breaks occur in the first 
game of the match, has been identified (Magnus and Klaassen, 1999). However, it would 
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appear that any non-iid effects such as the ‘hot-hand effect’ (in which winning a point, 
game or set increases ones chances of winning the next point, game or set) and the opposite 
effect, the ‘back-to-the-wall effect’, are small when analyzing large data sets (Klaassen and 
Magnus, 2001). 
 
Many players believe, and commentators often state, that the winner of a set of tennis is not 
infrequently determined by merely a couple of points within that set. Given that a set lasts 
about (say) 60 points on average, and the couple of critical points can occur almost 
anywhere in the set, it would appear to be difficult to use statistical methods to identify a 
couple of non-iid points amongst approximately 60 other iid points. It would be like 
‘searching for a needle in a haystack’. 
 
In this paper we focus on sets rather than points. If sets are not iid, it follows that points and 
games cannot be strictly iid, even if only a very small percentage of points contribute to the 
non-iid nature of the data. The data consists of ten years (1995 to 2004) of the four major 
annual tournaments for men’s singles. These tournaments are the Australian Open, the 
French Open, Wimbledon and the US Open, are known as the Grand Slam tournaments, 
and are played on different types of surfaces. Using W to represent a set won by the 
eventual winner of the match and L to represent a set lost by the eventual winner, there are 
several possible match categories from WWW to LLWWW. Each of the 4883 singles 
matches for this period were classified into the relevant categories, and the frequencies of 
the categories were analysed to check for lack of independence of set outcomes. 
 
METHODS 
 
Assuming without loss of generality that player A is the better player, the results of a best-
of-five sets singles match can be recorded as WWW, WWLW, WLWW, LWWW, 
WWLLW, WLWLW, WLLWW, LWWLW, LWLWW, LLWWW, and LLL, LLWL, 
LWLL, WLLL, LLWWL, LWLWL, LWWLL, WLLWL, WLWLL and WWLLL where W 
represents a set won by player A, and L represents a set lost by player A. When we do not 
know who the better player is, a win in three sets for example (WWW or LLL above) is 
simply a win WWW to the winner of the match (not necessarily player A). Thus, when we 
do not know who the better player is, the above twenty outcomes reduce to the ten mutually 
exclusive outcomes WWW, WWLW, WLWW, LWWW, WWLLW, WLWLW, WLLWW, 
LWWLW, LWLWW and LLWWW where W represents a set won by the eventual winner 
of the match and L represents a set lost by the eventual winner. 
 
The data consisted of ten years of men’s singles grand slam results. There were 4883 
matches in total, and spurious data such as matches where one player ‘retired’ (presumably 
injured) before the match was finished were omitted. The number of matches in each of the 
above categories was: 
 
WWW            2330; WWLW            503; WLWW            487; LWWW            609; 
WWLLW         151; WLWLW         135; WLLWW         186; LWWLW         138; 
LWLWW         156; LLWWW         188 



 241

The first model fitted involved a constant probability, p, of player A (the notionally or 
theoretically better player) winning each set. A short and simple search using a spreadsheet 
showed that the value of p which minimized Chi-Squared was 0.769, and the results are 
given in Table 1. For example, the expected value for the row WWW in Table 1 is 
4883*(0.769*0.769*0.769 + 0.231*0.231*0.231) = 2280.77, allowing for both a win and a 
loss by the theoretically better player. 
 

Table 1: Match outcomes when the probability player A wins each set is 0.769 

Category Observed Expected Obs-Exp Chi-Squared 
WWW 2330 2280.77 49.23 1.06 
WWLW 503 559.24 -56.24 5.66 
WLWW 487 559.24 -72.24 9.33 
LWWW 609 559.24 49.76 4.43 
WWLLW 151 154.09 -3.09 0.06 
WLWLW 135 154.09 -19.09 2.36 
WLLWW 186 154.09 31.91 6.61 
LWWLW 138 154.09 -16.09 1.68 
LWLWW 156 154.09 1.91 0.02 
LLWWW 188 154.09 33.91 7.46 
Total 4883 4883 0.00 38.68 
 
The value of Chi-Squared was 38.68 with 8 degrees of freedom, so the fit is a poor one. 
This is not surprising as a constant p-value for all matches is clearly unrealistic. It can be 
seen from the Obs-Exp column in Table 1 that there was a greater number of three sets and 
five sets results observed than was expected under this model. Also, for the four sets 
matches, this model underestimated the number of LWWW matches, and overestimated the 
other two categories. Similarly, for the five sets matches, the model underestimated the 
number of WLLWW and LLWWW matches. 
 
In order to attempt to overcome the shortage of three and five sets matches expected under 
the above model, it was decided to model the data using two p values, one greater than 
0.769 and the other less than it, and combine the results. The value greater than 0.769 
would increase the proportion of three set matches, and the value less than 0.769 would 
increase the proportion of five set matches. Thus, for simplicity, the data was modeled as 
consisting of 2 types of matches-‘close’ matches (with p less than 0.769) and ‘not-so-close’ 
matches (with p greater than 0.769). 
 
Half the matches were assumed to be ‘close’, and half ‘not-so-close’. Symmetric values 
about 0.769, p1 and p2, were considered, and the two p values which minimized Chi-
Squared were identified. These two values were p1 = 0.705 and p2 = 0.833. The results for 
this model are given in Table 2. For example, the expected value for row 4 (LWWW) of 
Table 2 is given by 4883(0.5*((1-p1)*p1*p1*p1 + p1*(1-p1)*(1-p1)*(1-p1)) + 0.5*((1-
p2)*p2*p2*p2 + p2*(1-p2)*(1-p2)*(1-p2))) = 541.71, allowing for both a win and a loss by 
the theoretically better player. 
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Table 2: Set outcomes when player A has in half the matches a probability of 0.705 of 
winning a set and in half the matches a probability of 0.833 of winning a set. 

Category Observed Expected Obs-Exp Chi-Squared 
WWW 2330 2340.77 -10.77 0.05 
WWLW 503 541.71 -38.71 2.77 
WLWW 487 541.71 -54.71 5.53 
LWWW 609 541.71 67.29 8.36 
WWLLW 151 152.85 -1.85 0.02 
WLWLW 135 152.85 -17.85 2.08 
WLLWW 186 152.85 33.15 7.19 
LWWLW 138 152.85 -14.85 1.44 
LWLWW 156 152.85 3.15 0.06 
LLWWW 188 152.85 35.15 8.08 
Total 4883 4883 0.00 35.59 
 
The value of Chi-Squared for this model was 35.59 with 7 degrees of freedom, so the fit is 
again a poor one. Whilst this is a better fit with respect to the proportion of three and five 
set matches, the number of LWWW matches is still underestimated under this model, as is 
the number of WLLWW and LLWWW matches. 
 
(It is noted here as an aside that if we remove the restriction that exactly half of the matches 
have a p-value of p1 and half of them have the value p2 whilst keeping p1 = 0.705 and p2 = 
0.833, a slightly smaller value of chi-squared can be obtained. The lowest Chi-Squared 
value obtained was 34.35 with 6 degrees of freedom when the proportion of matches with 
p1 = 0.705 was 0.53, and the proportion of matches with p2 = 0.833 was 0.47. Thus, for 
this model (and indeed for the others considered in this paper), modifying the proportion of 
‘close’ and ‘not-so-close’ matches had negligible effect on the Chi-Squared values. For this 
reason, no further reports on this modification are given in this paper.) 
 
It can be seen from Table 2 that, under this model, the expected number of matches in each 
of the 3 four sets categories are equal. Correspondingly, the expected number of matches in 
each of the 6 five sets categories are also equal. It is clear that this characteristic remains 
true even if we fitted more (or even many many more!) than just two p values to the data. 
Further, it follows that if the p-value is constant for each set within each match (but 
possibly different for each of the 4883 matches) the expected number of matches in each of 
the 3 four set categories would be equal, and that the expected number of matches in each 
of the 6 five set categories would also be equal. It is possible to fit the best-fitting model to 
this data such that the 3 four set categories have equal expected values and the 6 five set 
categories also have equal expected values. Note that this is simply a data fitting exercise, 
and that there is no assumed underlying p-value(s) such as in the above analyses. When this 
is done, the expected values for the three, four and five set categories are 2322.2, 534.0, and 
159.8 respectively, and the Chi-Squared value is 33.17 with 7 degrees of freedom. Again 
the fit is not a good one and we conclude that the p-values for each set (within each 
match) are not constant. 
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It can be seen from Table 2 that the (Obs-Exp) value was positive for the categories 
LWWW, WLLWW, LWLWW and LLWWW. These categories represent situations in 
which the winner (typically, but not always, the better player, player A) was behind (in 
sets) at some stage in the match. Thus, the data suggests that the better player might ‘try 
harder’ or ‘lift his game’ in situations in which he is behind. In order to address this ‘trying 
harder when behind’ effect, it was assumed that player A lifted his probability of winning a 
set by D1 when he was behind in the set score. A closer look at the data also suggests that 
player A might be ‘on-a-roll’ when he has just won a set and as a consequence lifts his 
probability of winning the next set. In order to address this ‘on-a-roll’ effect, it was 
assumed that player A lifted his probability of winning a set by D1 when he won the 
previous set. The categories WLLWW and LLWWW noted above represent situations in 
which the winner (probably more often player A) lost two sets in a row. These are 
situations in which player A has a real need to make an extra special effort to lift his game. 
Thus, it was further assumed that player A lifted his probability of winning a set by an 
amount D2 (anticipated to be somewhat bigger than D1) for the remainder of the match 
immediately after having lost two sets in a row (there are 3 such match categories). It is for 
reasons of simplicity that the parsimonious model with only two lifted levels was tested. 
 
Given that p1 and p2 are increased by D1 or D2 in certain situations, it seemed appropriate, 
in order to get a reasonable overall fit, to lower both their ‘starting’ values (ie, those for 
set1) from those in Table 2. Given this, the notion of symmetric p-values about 0.769 also 
seemed irrelevant. The values of p1 and p2, D1 and D2 which minimized Chi-Squared were 
p1 = 0.704 and p2 = 0.798, D1 = 0.035 and D2 = 0.110, and the results are given in Table 
3. For example, the expected value for the number of LLWWW matches is 
4883(0.5*((1-p1)*(1-p1-D1)*(p1+D2)*(p1+D2)*(p1+D2) + p1*(p1+D1)*(1-p1-D1)*(1-
p1)*(1-p1-D2))  +  0.5*((1-p2)*(1-p2-D1)*(p2+D2)*(p2+D2)*(p2+D2) + p2*(p2+D1)*(1-
p2-D1)*(1-p2)*(1-p2-D2))) = 186.68. 
 
Table 3: Match outcomes when p1 and p2 are 0.704 and 0.798 respectively, D1 = 0.035 and 

D2 = 0.110. 

Category Observed Expected Obs-Exp Chi-Squared 
WWW 2330 2333.26 -3.26 0.00 
WWLW 503 485.11 17.89 0.66 
WLWW 487 497.52 -10.52 0.22 
LWWW 609 607.47 1.53 0.00 
WWLLW 151 159.08 -8.08 0.41 
WLWLW 135 128.06 5.94 0.27 
WLLWW 186 184.21 1.79 0.02 
LWWLW 138 143.72 -5.72 0.23 
LWLWW 156 156.89 -0.89 0.01 
LLWWW 188 186.68 1.32 0.01 
Total 4883 4883 0.00 1.83 
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The value of Chi-Squared was 1.83 with 5 degrees of freedom, so the fit is a good one 
indicating that the model fits the data well. 
 
In order to carry out a simple check on the model, it was decided to break the data into two 
time periods (1995-1999 and 2000-2004), and check for consistency across the periods. The 
above parameter values or estimates for p1, p2, D1 and D2 based on the full 10 year period 
1995 to 2004 were used ‘as estimates’ for the period 1995 to 1999 (2448 matches) and for 
the period 2000-2004 (2435 matches). The fits were surprisingly good, with Chi-Squared 
values of 1.81 and 3.00 respectively. ( It is clearly quite likely that lower values of Chi-
Squared could be obtained by fitting p1, p2, D1 and D2 values specific to each period, but 
there is little point in doing this. 
 
There appeared to be no evidence in the data that the weaker player could lift his game in 
situations where it would have been useful for him to do so. 
 

Table 4: Observed match outcomes for the periods 1995-1999 and 2000-2004. 

category 1995-1999 2000-2004 
WWW 1189 1141 
WWLW 242 261 
WLWW 240 247 
LWWW 304 305 
WWLLW 76 75 
WLWLW 66 69 
WLLWW 98 88 
LWWLW 67 71 
LWLWW 76 80 
LLWWW 90 98 
Total 2448 2435 
 
RESULTS 
 
The 4883 completed men’s singles matches at grand slam tournaments for the period 1995-
2004 have been analysed to test the hypothesis that the probability of winning a set within a 
match is constant. This hypothesis was rejected. 
 
A model which fits the data well has been found. It is a model in which the better player 
lifts his probability of winning a set in certain situations. These situations are 
(i)when he is behind in the set score, needs to lift his game, and lifts his probability of 
winning the next set by (on average) 0.035, 
(ii)when he has just won a set, is ‘on-a-run’’, and lifts his probability of winning the next 
set by (on average) 0.035, and 
(iii)when he has just lost two sets in a row, desperately needs to lift his game, and lifts his 
probability of winning each remaining set by (on average) 0.110. 
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DISCUSSION 
 
The results of this study are quite encouraging for the better player, but perhaps somewhat 
discouraging for the weaker player. The findings indicate that the weaker player needs to be 
‘on his guard’ for a change in fortunes when the match is ‘going well’ for him. 
 
The results of the analysis in this paper show that often the better player can increase his 
probability of winning a set by quite a substantial amount when it is really necessary to do 
so in order to reduce his probability of losing the match. A set can often be won rather than 
lost by winning just one, two, or a few particular important points (Morris, 1977). Thus, it 
would appear from the analysis in this paper that the better player is more able to lift his 
play on particularly important points than is the weaker player. 
 
Further studies might include whether women’s matches (although only best-of-three sets) 
have comparable characteristics or whether there are gender differences in this regard. 
It would appear that the methodology used in this paper has a range of sporting 
applications, particularly for the often occurring situation in which the better player or team 
does not always win a match, or the ‘best’ player or team does not always win a series of 
matches. Another area of application might be assessment in which the ‘best’ student (or 
persons being assessed) does not always come first. 
 
CONCLUSIONS 
 
The conclusion is that matches turn around in favour of the better player significantly more 
often than would be expected under the usual randomness/independence assumptions of 
probability. As each point is a ‘zero-sum’ situation for the two players, it is not strictly 
possible to tell from just the statistical records whether this ‘turn-around’ characteristic is 
because the better player lifts his play or because the weaker player lowers his play. 
Nevertheless, it is useful for both players to know of the existence of this phenomenon as 
any player (except the best player in the world) should sometimes be the better player and 
sometimes the weaker on the court. The better player can take advantage of it, and the 
weaker player needs to guard against it. 
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ABSTRACT 
Studies to optimise take off angles for height or distance have usually involved either a 
time-consuming invasive approach of placing markers on the body in a laboratory 
setting or using even less efficient manual frame-by-frame joint angle calculations with 
one of the many sport science video analysis software tools available. This research 
introduces a computer-vision based, marker-free, real-time biomechanical analysis 
approach to optimise take-off angles based on speed, base of support and dynamically 
calculated joint angles and mass of body segments. The goal of a jump is usually for 
height, distance or rotation with consequent dependencies on speed and phase of joint 
angles, centre of mass COM) and base of support. First and second derivatives of joint 
angles and body part COMs are derived from a Continuous Human Movement 
Recognition (CHMR) system for kinematical and what-if calculations. Motion is 
automatically segmented using hierarchical Hidden Markov Models and 3D tracking is 
further stabilized by estimating the joint angles for the next frame using a forward 
smoothing Particle filter. The results from a study of jumps, leaps and summersaults 
supporting regular knowledge of results feedback during training sessions indicate that 
this approach is useful for optimising the height, distance or rotation of skills. 
 
KEY WORDS 
gymnastics, jumping, three-dimensional kinematics, computer vision 

 
INTRODUCTION 
Sport skills are tracked1 and biomechanically analysed by either requiring athletes to 
wear joint markers/identifiers (an approach with has the disadvantage of significant set 
up time) or manually marking up video frame-by-frame. Such complex and time 
consuming approaches to tracking and analysis is an impediment to daily use by 
coaches and has barely changed since it was developed in the 1970s. Using a less 
invasive approach free of markers, computer vision research into tracking and 
recognizing full-body human motion has so far been mainly limited to gait or frontal 
posing (Moeslund and Granum, 2001). Various approaches for tracking the whole body 
have been proposed in the image processing literature using a variety of 2D and 3D 
body models. However cylindrical, quadratic and ellipsoidal (Drummond and Cipolla, 
2001. Kakadiaris and Metaxas, 1996. Pentland and Horowitz, 1991. Wren et al., 1997) 
body models of previous studies do not contour accurately to the body, thus decreasing 
tracking stability. To overcome this problem, in this research 3D clone-body-model 
regions are sized and texture mapped from each body part by extracting features during 

                                                 
1 Commercially available trackers are listed at www.hitl.washington.edu/scivw/tracker-faq.html 
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the initialisation phase (Cham and Rehg, 1999). This clone-body-model has a number of 
advantages over previous body models: 
• It allows for a larger variation of somatotype (from ectomorph to endomorph), 

gender (cylindrical trunks do not allow for breasts or pregnancy) and age (from baby 
to adult). 

• Exact sizing of clone-body-parts enables greater accuracy in tracking edges, rather 
than the nearest best fit of a cylinder. 

• Texture mapping of clone-body-parts increases region tracking and orientation 
accuracy over the many other models which assume a uniform colour for each body 
part.  

• Region patterns, such as the ear, elbow and knee patterns, assist in accurately fixing 
orientation of clone-body-parts. 

 
Neither joint markers nor manual frame-by-frame mark-up provide volume and 3D 
centre-of-mass (COM) estimates of a 3D body model – invaluable for 3D 
biomechanical analysis. In this study, joint angle velocities, together with the size and 
mass of body segments enabled more accurate optimisation of take-off angles 
supporting the goal of a jump whether for height, distance or rotation with consequent 
dependencies on phase of joint angles and base of support. 
 
CLONE-BODY-MODEL 
 The clone-body-model proposed in this paper consists of a set of clone-body-
parts, connected by joints, similar to the representations proposed by Badler (Badler et 
al., 1993). Clone-body-parts include the head, clavicle, trunk, upper arms, forearms, 
hands, thighs, calves and feet. Degrees of freedom are modeled for gross full body 
motion. Degrees of freedom supporting finer resolution movements are not yet modeled, 
including the radioulnar (forearm rotation), interphalangeal (toe), metacarpophalangeal 
(finger) and carpometacarpal (thumb) joint motions. 

   
Figure 1:   Clone-body-model consisting of clone-body-parts which have a cylindrical 
coordinate system of surface points b() and up to three DOF for each joint linking the 
clone-body-parts. Each surface point is a vector b with cylindrical coordinates (d,θ,r), 
colour (h,s,i), accuracy of radius (ar), accuracy of colour (ahsi), elasticity of radius (er). 
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Each clone-body-part consists of a rigid spine with pixels radiating out (Figure 
1). Each pixel represents a point on the surface of a clone-body-part. Associated with 
each pixel is: radius or thickness of the clone-body-part at that point; colour as in hue, 
saturation and intensity; accuracy of the colour and radius; and the elasticity inherent in 
the body part at that point. Although each point on a clone-body-part is defined by 
cylindrical coordinates, the radius varies in a cross section to exactly follow the contour 
of the body as shown in Figure 2. 

Automated initialisation assumes only one person is walking upright in front of 
a static background initially with gait being a known movement model. Anthropometric 
data (Pheasant, 1996) is used as a Gaussian prior for initializing the clone-body-part 
proportions with left-right symmetry of the body used as a stabilizing guide from 50th 
percentile proportions. Such constraints on the relative size of clone-body-parts and on 
limits and neutral positions of joints help to stabilize initializations.  Initially a low 
accuracy is set for each clone-body-part with the accuracy increasing as structure from 
motion resolves the relative proportions. For example, a low colour and high radius 
accuracy is initially set for pixels near the edge of a clone-body-part, high colour and 
low radius accuracy for other near side pixels and a low colour and low radius accuracy 
is set for far side pixels. The ongoing temporal resolution following self occlusions 
enables increasing radius and colour accuracy. Breathing, muscle flexion and other 
normal variations of body part radius are accounted for by the radius elasticity 
parameter. 

 

 
Figure 2:   Clone-body-model example rotating through 360 degrees. 

 

KINEMATIC MODEL 
The kinematical model tracking the position and orientation of a person relative 

to the camera entails projecting 3D clone-body-model parts onto a 2D image using three 
chained homogeneous transformation matrices as illustrated in Figure 3. 

 
 p (x, b ) = Ii (x, Ci (x, Bi (x, b )))        (1) 

 
where x is a parameter vector calculated for optimum alignment of the projected model 
with the image, B is the Body frame of reference transformation, C is the Camera frame 
of reference transformation, I is the Image frame of reference transformation, b is a 
body-part surface point, p is a pixel in 2D frame of video (Rehg and Kanade, 1995). 

Joint angles are used to track the location and orientation of each body part, with 
the range of joint angles being constrained by limiting the DOF associated with each 
joint. A simple motion model of constant angular velocity for joint angles is used in the 
kinematical model. Each DOF is constrained by anatomical joint-angle limits, body-part 
inter-penetration avoidance and joint-angle equilibrium positions modelled with 
Gaussian stabilizers around their equilibria. To stabilize tracking, the joint angles are 
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predicted for the next frame. The calculation of joint angles, for the next frame, is cast 
as an estimation problem which is solved using a Particle filter (Condensation 
algorithm). 
 

 
Figure 3:   Three homogeneous transformation functions B(), C(), I() project a point 

from a clone-body-part onto a pixel in the 2D image. 
 

  PARTICLE FILTER 
      The Particle Filter was developed to address the problem of tracking contour 

outlines through heavy image clutter (Isard and Blake, 1996, 1998). The filter’s output 
at a given time-step, rather than being a single estimate of position and covariance as in 
a Kalman filter, is an approximation of an entire probability distribution of likely joint 
angles. This allows the filter to maintain multiple hypotheses and thus be robust to 
distracting clutter. 

      With about 32 DOFs for joint angles to be determined for each frame, there is the 
potential for exponential complexity when evaluating such a high dimensional search 
space. MacCormick (MacCormick, 2000) proposed Partitioned Sampling and Sullivan 
(Sullivan, 1999) proposed Layered Sampling to reduce the search space by partitioning 
it for more efficient particle filtering. Although Annealed Particle Filtering (Deutscher 
et al., 2000) is an even more general and robust solution, it struggles with efficiency 
which Deutscher (Deutscher, 2001) improves with Partitioned Annealed Particle 
Filtering. 

      The Particle Filter is a considerably simpler algorithm than the Kalman Filter. 
Moreover despite its use of random sampling, which is often thought to be 
computationally inefficient, the Particle Filter can run in real-time. This is because 
tracking over time maintains relatively tight distributions for shape at successive time 
steps and particularly so given the availability of accurate learned models of shape and 
motion from the human-movement-recognition (CHMR) system. Here, the particle filter 
has:  
• 3 probability distributions in problem specification:  

1. Prior density p(x) for the state x 
 joint angles x in previous frame  

2. Process density p(xt|xt-1)  
 kinematical and clone-body-models (xt-1: previous frame, xt: next frame) 

3. Observation density p(z|x) 
 image z in previous frame 

• one probability distribution in solution specification:  

33DD  ccaammeerraa  
  ((wwoorrlldd))  ffrraammee  

ooff rreeffeerreennccee 22DD  iimmaaggee  

BB(())  
ttoo  

BBooddyy  

CC(())  
ttoo  
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II(())  
ttoo  

IImmaaggee

33DD  ppeerrssoonn  
ffrraammee  ooff    
rreeffeerreennccee 33DD  bbooddyy--

ppaarrtt  
ffrraammee  ooff    
rreeffeerreennccee 
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1. State Density p(xt|Zt)  
 where xt is the joint angles in next frame Zt 

 
1. Prior density: Sample s′t from the prior density p(xt-1|zt-1) where xt-1=joint angles in 
previous frame, zt-1. The sample set are possible alternate values for joint angles. When 
tracking through background clutter or occlusion, a joint angle may have N alternate 
possible values (samples) s with respective weights w, where prior density,   

p(x)  ≈  St-1 = {(s(n),w(n)), n=1..N}  =  a sample set 
(St-1 is the sample set for the previous frame, w(n) is the nth weight of the nth sample s(n) ) 
For the next frame, a new sample is selected, s′t = st-1 by finding the smallest i for which 
c(i) ≥ r, where c(i) = ∑tw(i) and r is a random number {0,1}. 
2. Process density: Predict st from the process density p(xt|xt-1= s′t). Joint angles are 
predicted for the next frame using the kinematic model, body model & error 
minimisation. A joint angle, s ( )n

t in the next frame is predicted by sampling from the 
process density, p(xt|xt-1 = s′t(n)) which encompasses the kinematic model, clone-body-
model and cost function minimisation. In this prediction step both edge and region 
information is used. The edge information is used to directly match the image gradients 
with the expected model edge gradients. The region information is also used to directly 
match the values of pixels in the image with those of the clone-body-model’s 3D colour 
texture map. The prediction step involves minimizing the cost functions (measurement 
likelihood density):  
 
edge error Ee using edge information: 
 

   Ee(St) =
1

2neve

(|∇it(x, y) |−mt (x, y,St))
2 + 0.5(S − St )

T

x,y
∑ Ct

−1(S − St) →minSt       (2) 

 
region error Er using region information: 
 

    Er (St ) =
1

2nrvr

(it[pj (St )]− it−1[ pj(St−1)])
2 + Ee(St)

j=1

nr

∑ →minSt                                (3) 

 
where it represents the image at time t,  mt the model gradients at time t,  ne is the 
number of edge values summed, ve is the edge variance, nr is the number of region 
values summed, vr is the region variance, pj is the image pixel coordinate of the jth 
surface point on a clone-body-part. 
 
3. Observation density: Measure and weigh the new position in terms of the 
observation density, p(zt|xt). Weights wt = p(zt|xt = st) are estimated and then weights 
∑nw(n) = 1 are normalized. The new position in terms of the observation density, p(zt|xt) 
is then measured and weighed with forward smoothing: 
• Smooth weights wt over 1..t, for n trajectories 
• Replace each sample set with its n trajectories {(st,wt)} for 1..t 
• Re-weight all w(n) over 1..t 
Trajectories tend to merge within 10 frames 

 O(Nt) storage prunes down to O(N) 
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Figure 4 :  Tracking jumping into a flic-flac with four overlaid information tiles.         
Tile 1: principle axis through the body; Tile 2: body frame of reference (normalised to 
the vertical); Tile 3: motion vector trace (subset displayed); Tile 4: recognised skills. 

 
In this research, feedback from the CHMR system utilizes the large training set 

of skills to achieve an even larger reduction of the search space. In practice, human 
movement is found to be highly efficient, with minimal DOFs rotating at any one time. 
The equilibrium positions and physical limits of each DOF further stabilize and 
minimize the dimensional space. With so few DOFs to track at any one time, a minimal 
number of particles are required, significantly raising the efficiency of the tracking 
process. Such highly constrained movement results in a sparse domain of motion 
projected by each motion vector. 

Because the temporal variation of related joints and other parameters also 
contains information that helps the recognition process infer skill boundaries, the system 
computes and appends the temporal derivatives and second derivatives of these features 
to form the final motion vector. Hence the motion vector includes joint angles (32 DOF), 
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body location and orientation (6 DOF), centre of mass (3 DOF), principle axis (2 DOF) 
all with first and second derivatives. 

 
PERFORMANCE 
  Hundreds of jumps and leaps were tracked and classified using a 2GHz, 640MB 
RAM Pentium IV platform processing 24 bit colour within the Microsoft DirectX 9, 
Intel OpenCV environment under Windows XP. The video sequences were captured 
with a Logitech USB 2.0 camera at 30 fps, 320 by 240 pixel resolution. Each person 
jumped in front of a stationary camera with a static background and static lighting 
conditions with minimal shadows. Only one person was in frame at any one time. 
Tracking began when the whole body was visible which enabled initialisation of the 
clone-body-model.  
 

 
Figure 5:   Tracking height, angle of splits, centre of mass and 

principal axis through a split jump. 
 
The skill error rate quantifies CHMR system performance by expressing, as a 

percentage, the ratio of the number and magnitude of joint angle tracking errors to the 
number of joint angles in the reference set. Depending on the skill, CHMR system skill 
error rates can vary by an order of magnitude. The CHMR system results are based on a 
set of a total of 240 jump patterns, from straight jumps and split leaps (Figure 5) to 
jumping backward into flic-flacs (Figure 4). These were successfully tracked and 
evaluated with their respective biomechanical components quantified where a skill error 
rate of only 3.8% was achieved. 

Motion blurring lasted about 10 frames on average with the effect of perturbing 
joint angles within the blur envelope. Given a reasonably accurate angular velocity, it 
was possible to sufficiently de-blur the image. There was minimal motion blur arising 
from rotation about the longitudinal axis during a twisting salto due to a low surface 
velocity tangential to this axis from minimal radius with limbs held close to a straight 
body shape. This can be seen in Figure 6 where the arms exhibit no blurring from 
twisting rotation, contrasted with motion blurred legs due to a higher tangential velocity 
of the salto rotation. 

The CHMR system also failed for loose clothing. Even with smoothing, joint 
angles surrounded by baggy clothes permutated through unexpected angles within an 
envelope sufficiently large as to invalidate the tracking and evaluation. 
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Figure 6:   Minimal motion blur arising from rotation about the longitudinal axis 

during a double twisting salto. 
 
CONCLUSIONS 

The 3.8% error rate attained in this research is not yet evaluating a natural world 
environment nor is this a real-time system with up to seconds to process each frame. 
The CHMR system did achieve 96.2% accuracy for the reference test set of skills. 
Although this 96.2% recognition rate was not as high as the 99.2% accuracy Starner and 
Pentland (Starner and Pentland, 1996) achieved, a larger test sample of skills were 
evaluated in this paper. 

To progress towards the goal of lower error rates, the following improvements 
seem most important: 

• Expand the clone-body-model to include a complete hand-model for enabling 
even more subtle movement domains such as finger signing and to better 
stabilize the hand position during tracking. 

• Use a multi-camera or multi-modal vision system such as infra-red and visual 
spectrum combinations to better disambiguate the body parts in 3D and track the 
body in 3D. 

• More accurately calibrate all movement skills with multiple subjects performing 
all skills on an accurate commercial tracking system recording multiple camera 
angles to improve on depth of field ambiguities. Such calibration would also 
remedy the qualitative nature of tracking results from computer vision research 
in general.  

• Enhance tracking granularity using cameras with higher resolution, frame rate 
and lux sensitivity. 

 
The results suggest that this approach has the potential to assist coaches and athletes 

optimise jump based skills during regular sessions by automatically displaying and 
logging biomechanical parameters of specific skills involving jumping and leaping.  

 
REFERENCES 
 
Badler, N. I., Phillips, C. B., Webber, B. L. (1993) Simulating humans, Oxford 
University Press, New York, NY. 

Cham, T. J., Rehg, J. M. (1999) A multiple hypothesis approach to figure tracking, 
IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 1: 239–245. 



 255

Deutscher, J., Blake. A., Reid, I. (2000) Articulated body motion capture by annealed 
particle filtering, IEEE Conference on Computer Vision and Pattern Recognition, 
CVPR, 2: 1144-1149. 

Deutscher, J., Davison, A., Reid, (2001) A. Automatic partitioning of high dimensional 
search spaces associated with articulated body motion capture, IEEE Conference on 
Computer Vision and Pattern Recognition, CVPR, 2: 669-676. 

Drummond, T., Cipolla, R. (2001) Real-time tracking of highly articulated structures in 
the presence of noisy measurements, IEEE International Conference on Computer 
Vision, ICCV, 2: 315–320. 

Isard, M. A., Blake, A. (1996) Visual tracking by stochastic propagation of conditional 
density, 4th European Conference on Computer Vision, 343-356, Cambridge, England. 

Isard, M. A., Blake, A. (1998) A mixed-state Condensation tracker with automatic 
model switching, 6th International Conference on Computer Vision, 107-112. 

Kakadiaris, I., Metaxas, D. (1996) Model-based estimation of 3D human motion with 
occlusion based on active multi-viewpoint selection, IEEE Conference on Computer 
Vision and Pattern Recognition, CVPR, 81–87. 

MacCormick, J., Isard, M. (2000) Partitioned sampling, articulated objects and 
interface-quality hand tracking, European Conference on Computer Vision, 2: 3-19. 

Moeslund, T. B., Granum, E. (2001) A survey of computer vision-based human motion 
capture, Computer Vision and Image Understanding 18: 231–268. 

Pentland, A., Horowitz, B. (1991) Recovery of nonrigid motion and structure, IEEE 
Transactions on PAMI, 13: 730-742. 

Pheasant, S. (1996) Bodyspace. Anthropometry, Ergonomics and the Design of Work, 
Taylor & Francis. 

Rehg, J. M., Kanade, T. (1995) Model-based tracking of self-occluding articulated 
objects, Fifth International Conference on Computer Vision, 612-617. 

Sullivan, J., Blake, A., Isard, M., MacCormick, J. (1999) Object localization by 
bayessian correlation, 7th International Conference on Computer Vision, 2: 1068-1075. 

Wren, C., Azarbayejani, A., Darrell, T., Pentland, A. (1997) “Pfinder: Real-time 
tracking of the human body”, IEEE Transactions on PAMI, 19(7): 780-785. 



 256

AN ANALYSIS OF GOAL-KICKING ACCURACY IN  
AUSTRALIAN RULES FOOTBALL 

 
Bedford1, A and Schembri1, A 

School of Mathematical and Geospatial Sciences, RMIT University, Bundoora, VIC, 
Australia 
 

ABSTRACT 

Australian Rules Football, governed by the Australian Football League (AFL), is the 
most popular winter sport played in Australia. One criticism directed towards players of 
the game is that in over 100 years of football, accuracy of kicking for goal is the only 
aspect not to have improved. The truth of this claim is somewhat difficult to ascertain. 
However, using data from the 2005 AFL season, we investigate goal-kicking accuracy 
at a variety of levels to determine any differences in goal-kicking success. We chart 
accuracy at both a team and player level across various distances, angles and types of 
play. Unlike overseas codes of football, AFL was not played in a fully enclosed arena 
until the completion of Docklands Stadium in Melbourne in 2000. This investigation 
also determines if Docklands stadium has had any possible influence on accuracy. 
 
 
KEY WORDS 

goal kicking, accuracy, AFL 
 
 
INTRODUCTION 

Australian Rules Football is arguably Australia’s most popular winter sport. It is a fast 
game played over four quarters of roughly 30 minutes in length, where players at the 
elite level need to be multi skilled to succeed. Some of its features include jumping and 
high marking (catching the ball), the use of handball, being able to bounce the ball on 
the run, and being able to kick over both short and long distances to either a player or 
for the goals. One common criticism directed towards players of the game is that in over 
100 years of football, kicking for goal accurately is the only aspect not to have 
improved. However, this claim appears unfounded, since the ratio of goals to behinds 
has improved steadily since the game’s inception. At its worst, the ratio of goals scored 
(6 points) to every behind (1 point) was 0.61 in 1900. This goal to behind ratio has 
exceeded one consistently since 1982, whereas it remained below 1.0 from 1897 until 
73 years later. The highest ratio was recorded in 2000, with a ratio of 1.23. There may 
well be many factors that have contributed to this improvement, including the move 
away from suburban grounds, an improvement in player skill, the introduction of a 
national competition, or the use of an indoor stadium. 
 
In this paper, goal-kicking accuracy will be examined at a variety of levels to ascertain 
any possible differences in goal-kicking success. Using data from the 2005 AFL season, 
we chart the accuracy at both a team and player level matched with various distances, 
angles and types of play. An additional aim of this investigation is to determine if the 
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recent addition of an indoor stadium has had any influence on the goal-kicking accuracy 
of teams in relation to other stadium and team combinations. 
 
Unlike its North American equivalent, AFL football has only enjoyed the use of an 
indoor stadium since season’s commencement in 2000. The stadium is located at 
Docklands in Melbourne and has the current commercial name of the Telstra Dome. 
Playing sports indoors removes many possible environmental variations experienced 
when playing sport outdoors. Although few studies have examined the impact of 
playing AFL football at Docklands Stadium, research has indicated that sporting teams 
based in indoor stadiums demonstrate a greater home field advantage when compared to 
those based in outdoor stadiums. To illustrate this notion, Zeller and Jurkovac (1989) 
found that playing home games in an indoor venue generated a 3-4% increase in home 
field advantage for American baseball teams, a figure that translated to three additional 
wins each season. 
 
Several studies have emphasized the importance of shooting accuracy in sports such as 
basketball, water polo, and soccer. Onwuegbuzie (2000) incorporated a multiple 
regression model to examine the greatest predictors of winning a game of NBA 
basketball, and reported that field goal conversion was the single greatest predictor of 
success. Recent studies have also examined goal scoring accuracy during penalty 
shootouts in sports such as soccer and water polo (McGarry & Franks, 2000; Smith, 
2004). 
 
Research has suggested that during a game of water polo, the accuracy of each team’s 
penalty shots does not vary as a function of the closeness of the game, the quarter the 
shot is taken, or the importance of the game in the context of the remainder of the 
season (Smith, 2004). In contrast, penalty shots in soccer demonstrate widespread 
variation with regard to accuracy. McGarry and Franks (2000) used data from the 1982-
1998 FIFA World Cups and the 1996 European Championships and reported that 
penalty shots during free play were more accurate than those during a penalty shoot out. 
These authors contend that this may result from specialist penalty takers repeatedly 
shooting penalties during free play. In effect, these findings may have implications for 
AFL football since specialist goal kickers are often present within each team. 
 
We will begin our investigation by discussing the intricacies of scoring in AFL football, 
the data collected in the present study, and the statistical methods used to analyze the 
data. 
 

METHODS 
Scoring in AFL football 
There are several ways a team can score in AFL football. Kicking a goal earns a 
maximum score of six points. This is achieved by kicking the football between two 
center goal posts without the ball being touched by any other player. Goal kicking 
requires both accuracy and ability to keep the ball from other players reach. Figure 1 
displays a typical forward line in AFL football and the cell distribution that was 
incorporated in the current analysis. 
Definition of accuracy 
We define accuracy by considering the total number of scoring plays by the player, 
team or teams of interest. We define the probability of an accurate shot for event i as 
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distribution, whereby each shot from certain positions under certain conditions is 
considered independent with either a goal (accurate) or a point (inaccurate) occurring. It 
is notable that missed shots (those that did not make the distance or were kicked out of 
bounds) were not considered due to this data being unavailable, as was consideration of 
rare cases (typically close games nearing the end of the match) where it may be 
advantageous to deliberately miss a goal to maintain a forward field position. 
Data 
AFL data is easy to source thanks to the endeavors of both dedicated fans of the game 
and the internet. A number of sources were used to obtain the necessary data for 
analysis in this paper. AFL tables (http://stats.rleague.com/afl/afl_index.html), All the 
stats (http://www.allthestats.com/) and Footywire 
(http://www.footywire.com/fw/web/ft_index) provide the public with readily accessible 
match data which we used to cross reference for our final sample of play by play data 
for season 2005, and match by match data from 1995 to seasons end 2005. We 
conducted our analysis on a number of variables. For every scoring play in season 2005, 
we obtained data on each scoring play - including the game time of a score, the player 
kicking for goal, the angle and distance from goal, and the type of play. We eliminated 
rushed behinds (when an opposition concedes a point) as this has no direct bearing on 
the scoring accuracy of a team or player. 
Analysis methods 
As indicated in the results section, we look at accuracy at a multinomial level – 
consisting of individual binomial success probabilities from a variety of distances from 
goal under differing types of play. When we considered two sets of events i, we simply 
used a two sample z-test on the success probabilities to determine significance. In order 
to determine significant differences between more than two events we used both Ryan’s 
method (Ryan 1960) and a contingency table analysis reported as χ2 (Pazer & Swanson, 
1972). For post-hoc analysis, we used both Ryan’s method and a Tukey-type multiple 
comparison test (Zar, 1999). Both procedures are comparable to the renowned Tukey’s 
method for Wholly Significant Difference (WSD). For the Tukey-type multiple 
comparison test, the square root of each proportion was transformed to its arcsine so the 
resultant data will have an underlying distribution that is nearly normal. Then Tukey’s 
test is performed on the data. Ryan’s method differs slightly from Tukey’s method in 
that it produces better results for smaller samples where the normal approximation is 
invalid. In this way we end up with results analogous to that obtained using Tukey’s 
WSD. 
 

RESULTS 
The cost of inaccuracy since 1995 
If we consider the 2035 matches played from 1995 to 2005, the team with the best 
scoring accuracy won 64.7% of matches played. However, this statistic fails to consider 
if the losing team could have won if they were more accurate. Remarkably, 10.7% of 
losing teams had a greater number of scoring shots than their opposition and could have 
won the match if they were more accurate. 
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Figure 1. Proportion of losses where scoring shots outnumbered the opponent 1995-2005

 

 

 

 

 

 

 
 
Figure 1 looks deeper at this cost, considering the proportion of lost matches that could 
have been won at a team level if their goal scoring were more accurate than their 
opposition. The unadjusted values include rushed behinds, whereas the adjusted 
removes all rushed behinds. The AFL team with the worst ‘inaccuracy losses’ record 
was the Western Bulldogs, suffering 30 defeats that could have been victories (an 
unadjusted 22.6% of losses). In both seasons 2002 and 2004, the Bulldogs lost 4 
matches that could have been victories if they were more accurate – a huge amount 
considering there are only 22 regular season matches (in 2002 they missed the finals by 
1.5 wins). 
Accuracy for season 2005 
Data from the 2005 AFL season were analyzed to determine those areas that generate 
scoring opportunities in AFL football. The following tables incorporate all home and 
away, and finals matches played during the 2005 season. 
 

Table 1: Goals scored across varying distances and angles as a percentage of all goals 
scored. 

Distance /  
Angle Less 10m 10m-30m 30m-40m 40m-50m Over 50m Total 

In Front 6.0 22.6 12.3 14.5 5.9 61.3 
45 Degrees 1.7 11.0 8.9 10.1 3.8 35.5 
On Boundary 0.4 1.8 0.6 0.4 0.0 3.2 
Total  8.1 35.4 21.8 25.0 9.7 100.0 

 
As shown in Table 1, the majority of goals were scored directly in front of goal as 
opposed to on a 45° angle or from the boundary line. Behinds scored as a function of 
distance and angle were also assessed and the results are displayed in Table 2. 
 

Table 2: Behinds scored across varying distances and angles as a percentage of all behinds 
scored. 

Distance / 
Angle 

Less 
10m 10m-30m 30m-40m 40m-50m Over 50m Total 

In Front 0.3 8.5 8.9 11.4 7.9 37.0 
45 Degrees 0.2 7.7 11.7 11.4 4.6 35.6 
On Boundary 0.1 2.4 1.5 0.7 0.1 4.8 
Total 0.6 18.6 22.1 23.5 12.6 100.0* 

*Note. 22.6% of behinds were rushed 
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Unlike the distribution of goals in Table 1, behinds are evenly distributed when players 
kick from either in front of goal or at a 45° angle. However, the proportion of behinds 
scored directly in front of goal may be a reflection of the high number of shots taken 
from this position. 
Comparison of set shots and general play accuracy. 
To further examine the nature of goal kicking in AFL football, shots at goal were 
separated into set shots and general play categories. A set shot incorporates a kick for 
goal following a mark or free kick, whilst general play includes taking a snap shot for 
goal or kicking whilst on the run. Significance tests comparing accuracy in sets shots 
and general play were conducted using two sample z-tests. These analyses revealed that 
when kicking from directly in front, set shots were significantly more accurate than 
shots in general play at a distance of 10 to 30 meters (p < .001), or 30 to 40 meters (p < 
.001). Similar results were obtained when kicking for goal on a 45° angle. In particular, 
there was a significant increase in goal-kicking accuracy when kicking a set shot from a 
distance of 10 to 30 meters (p < .001), or 30 to 40 meters (p < .02). In contrast, when 
kicking for goal from greater than 40 meters, kicking whilst in general play was equally 
effective as kicking a set shot. However, the likelihood of scoring a goal from further 
than 40 meters remains moderate at best, regardless of the type of kick. Such a 
conclusion is verified in Table 3 which displays the overall accuracy of AFL clubs 
across all venues during 2005. 
 

Table 3: Goal-kicking accuracy (%) across varying angles and distances from goal. 
 Set Shot General Play 
Distance 
from Goal 

In  
Front 

45˚ 
Angle 

Boundary 
Line 

In  
Front 

45˚ 
Angle 

Boundary 
Line 

 
0-10 

100.0 
(90) 

100.0 
(27) 

83.3 
(12) 

94.4 
(213) 

88.7 
(62) 

80.0 
(10) 

10-30 86.0 
(664) 

73.4 
(331) 

59.1 
(66) 

67.6 
(772) 

56.7 
(513) 

41.2 
(119) 

30-40 71.2 
(510) 

51.2 
(516) 

40.0 
(55) 

52.5 
(446) 

43.4 
(385) 

21.2 
(33) 

40-50 62.8 
(744) 

52.2 
(644) 

48.4 
(31) 

56.2 
(418) 

50.0 
(304) 

26.7 
(15) 

50+ 51.3 
(277) 

53.6 
(183) 

50.0 
(4) 

44.0 
(325) 

45.9 
(185) 

0.0 
(2) 

Note. n in parenthesis 
 
Clearly, when kicking from a distance less than 50 meters, the probability of scoring a 
goal from directly in front is considerably higher than an equivalent shot on a 45° angle 
or from the boundary line. Using Ryan’s method, significance tests were conducted for 
each multiple comparison to determine whether goal-kicking accuracy varied across the 
distance and angle of the shot at goal, refer to Tables 4 and 5 respectively. 
 
As shown in Tables 3, 4 and 5, goal-kicking accuracy declined significantly with each 
increasing distance interval for set shots taken in front of goal. Furthermore, when 
kicking a set shot on a 45° angle, AFL players were significantly more accurate when 
kicking between 0 and 30 meters, when compared with all other distances. During 
general play, kicking from in front of goal between 0 and 30 meters was significantly 
more accurate than kicking in excess of 30 meters. Additionally, kicking in general play 
between 0 and 30 meters was significantly more accurate than any other distance 
interval when on a 45° angle. There were no significant differences in goal-kicking 
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accuracy across the various distances when having a set shot or kicking in general play 
from the boundary line. 
 

Table 4: Multiple comparisons of goal-kicking accuracy across varying distances from goal. 
Type of Play Angle χ2 p-value Extreme Groups ω p 
Set Shot In Front < .001 (0-10m, 50m +) -0.334 < .001 
 45° Angle < .001 (0-10m, 50m +) -0.334 < .001 
   (30-40m, 50m +) 0.64 ns 
 Boundary ns (0-10m, 50m +) 0.013 ns 
General Play In Front < .001 (0-10m, 50m +) -0.383 < .001 
   (30-40m, 40-50m) 0.041 ns 
 45° Angle < .007 (0-10m, 50m +) -0.261 < .001 
   (30-40m, 50m +) 0.165 ns 
 Boundary .007 (0-10m, 50m +) 0.255 ns 

Note. n in parenthesis 
 
In regard to the angle from goal, kicking a set shot from the boundary line was 
significantly less accurate than kicking from in front or on a 45° angle when less than 
30 meters out from goal. Furthermore, when kicking from 30 to 40 meters from goal, 
having a set shot from in front was significantly more accurate than from a 45° angle or 
from the boundary line. Finally, kicking from in front was significantly more accurate 
than kicking from a 45° angle or from the boundary line when kicking in general play 
between 10 and 40 meters from goal. 
Goal-kicking accuracy across home and away venues. 
Table 6 displays a comparison of goal-kicking accuracy across all AFL teams when 
playing at home and away venues. Two-sample z-tests revealed that when kicking a set 
shot from outside the 50 meter arc, there was a significant increase in the probability of 
kicking a goal when playing at home in comparison to an away venue, p < .031. 
However, no other significant differences emerged between goal kicking accuracy at 
home and away venues. 
Goal-kicking accuracy across specialist and non-specialist goal-kickers. 
Comparable to a striker in soccer, or a three point specialist in basketball, primary goal 
kickers exist in the majority of AFL teams. What remains unclear however is whether 
these forwards are superior at kicking for goal when compared to their teammates. Two 
sample z-tests revealed that leading goal kickers were significantly more accurate than 
all other AFL players when converting set shots from either 30 to 40 meters in front of 
goal (p = .032), or 10 to 30 meters on a 45° angle (p = .004). Set shots in front of goal 
were also bordering significance for the following distances: 10 to 30 meters (p = .06), 
40 to 50 meters (p = .055), and in excess of 50 meters (p = .056). However, these 
distances may have lacked significance due to the small sample of specialist goal 
kickers. Surprisingly, there were no significant differences in shots taken during general 
play between specialist goal kickers and all other AFL players. 
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Table 5: Multiple comparisons of goal-kicking accuracy across varying angles from goal. 
Type of Play Distance χ2 p-value Extreme Groups ω p 
Set Shot 0m to 10m < .001 In Front, 45°, Boundary -0.066 < .001 
   45°, Boundary -0.004 .044 
 10m to 30m < .001 In Front, 45°, Boundary -0.134 < .001 
   In Front, 45° -0.071 < .001 
   45°, Boundary -0.013 .029 
 30m to 40m < .001 In Front, 45°, Boundary -0.128 < .001 
   In Front, 45° -0.135 < .001 
   45°, Boundary 0.039 ns 
   In Front, Boundary -0.171 < .001 
 40m to 50m < .001 In Front, 45°, Boundary 0.095 ns 
 50m + ns In Front, 45°, Boundary 0.631 ns 
General Play 0m to 10m ns In Front, 45°, Boundary 0.079 ns 
 10m to 30m < .001 In Front, 45°, Boundary -0.138 < .001 
   In Front, 45° -0.050 < .001 
   45°, Boundary -0.048 .004 
 30m to 40m < .001 In Front, 45°, Boundary -0.075 .003 
   In Front, 45° -0.017 .013 
   45°, Boundary -0.031 .020 
 40m to 50m .030 In Front, 45°, Boundary 0.050 ns 
 50m + ns In Front, 45°, Boundary 0.473 ns 

Note. n in parenthesis 
 

Table 6: Goal-scoring accuracy (%) across home and away venues. 
  10-30 30-40 40-50 50+ 

  In 
Front 

45˚ 
Angle 

In 
Front 

45˚ 
Angle 

In 
Front 

45˚ 
Angle 

In 
Front 

45˚ 
Angle 

Home 
86.3 
(342) 

74.3 
(183) 

74.6 
(252) 

51.9 
(243) 

61.4 
(373) 

52.6 
(321) 

57.3 
(150) 

59.0 
(105) 

Set Shot 
Away 

85.7 
(322) 

72.6 
(146) 

67.8 
(258) 

50.6 
(269) 

63.7 
(364) 

51.7 
(317) 

44.4 
(124) 

45.5 
(77) 

Home 
69.5 
(413) 

55.9 
(272) 

50.6 
(243) 

46.6 
(221) 

56.5 
(216) 

53.9 
(154) 

46.5 
(142) 

48.6 
(109) General 

Play 
Away 

65.5 
(359) 

57.7 
(241) 

54.7 
(203) 

39.0 
(164) 

55.9 
(202) 

46.0 
(150) 

42.1 
(183) 

42.1 
(76) 

Note. n in parenthesis 
 
Quarter by quarter comparison. 
Another aspect of AFL football that may impact goal-kicking accuracy is the duration 
of a game. AFL football is played over four 30 minute quarters, totaling 120 minutes of 
intense sport which demands peak levels of endurance and sustainability. Using both 
Ryan’s method and the χ2 approach, significance tests were conducted for each multiple 



 263

comparison. The four quarters differed significantly for a set shot taken 10 to 30 meters 
out when directly in front of goal )017.;028.'( 2 == ppsRyan χ . Follow-up analysis 
using both Ryan’s method and Tukey’s approach revealed that players from this 
position were more accurate during Quarter 1 when compared to Quarters 2 and 3. 
Additionally, goal-kicking accuracy was superior during Quarter 1 in comparison to 
Quarters 3 and 4 when kicking a set shot in excess of 50 meters from goal. 
Close versus non-close game comparison. 
A comparison of goal-kicking accuracy during the fourth quarter of close versus non-
close games was also examined. Close games were defined as those with a points 
margin between the teams of less than or equal to 12 points at the time the kick was 
taken. Two-sample z-tests revealed no significant differences in goal-kicking accuracy, 
indicating that AFL footballers remain as accurate during pressurized and regular 
games. 
A look at Docklands Stadium 
To determine the impact that playing at an indoor stadium had on goal-kicking 
accuracy, the number of games lost due to inaccuracy at each stadium between the 2000 
and 2005 seasons were plotted and the results are displayed in Table 7. 
 

Table 7: Losses due to inaccuracy and overall accuracy across AFL venues during seasons 
2000 to 2005. 

Losses due to inaccuracy 

Stadium Unadjusted Adjusted^ 

Losses due to 
Inaccuracy 

(%)^ 
Total 

Losses 
Overall 

Accuracy 
(%) 

First 
Played

Docklands 13 12 4.7 275 56.4 2000 
Subiaco 9 7 7.0 129 54.2 1987 
Princes Park 4 3 9.1 44 54.5 1897 
Football Park 15 15 10.6 142 53.7 1991 
MCG 30 23 10.8 279 54.8 1897 
GABBA 9 6 11.5 78 53.1 1981 
SCG* 9 5 13.6 66 52.9 1979 
Kardinia 7 7 15.2 46 52.4 1941 
York Park 3 1 20.0 15 53.0 2001 
Stadium Aust. 4 4 28.6 14 53.8 2002 
Manuka 5 4 35.7 14 53.5 1998 

^Rushed behinds removed 
*4 matches played in 80 years prior to 1979 
 
As shown in Table 7, Docklands Stadium hosted the least number of games that were 
potentially lost as a result of inaccurate kicking and provides preliminary evidence that 
playing in an indoor stadium impacts on goal-kicking accuracy. Furthermore, a 
comparison of the two main Victorian stadiums (Docklands and MCG) showed 
statistically significant improvements in the goal kicking accuracy levels of games 
played at Docklands (z = -2.06, p = .040). 
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To assess whether playing in an indoor stadium increases goal-kicking accuracy for the 
home team, the accuracy of teams based at Docklands stadium was compared to those 
based at alternate venues, shown in Table 11. Using both Ryan’s method and the χ2 
approach, no significant differences were found in goal-kicking accuracy for Docklands 
stadium tenants, other Victorian clubs, and non-Victorian clubs. 
 

DISCUSSION 
Table 1 revealed that 90.3% of goals scored during 2005 were kicked between 0 and 50 
meters from goal, demonstrating the multidimensional nature of AFL footballers. In 
effect, forwards are capable of kicking goals from varying distances and angles which is 
analogous to the skills of professional basketball players, albeit on a much larger scale. 
 
The benefits of directing the ball through the center corridor were also demonstrated 
throughout this paper. In fact, the probability of scoring a goal when kicking from 
directly in front was significantly greater than an equivalent shot on a 45° angle or from 
the boundary line; provided the player was within 50 meters from goal. These findings 
highlight the benefits of implementing a team strategy that encourages players to direct 
the ball through the middle of the ground rather than running the ball along the wing 
and boundary line. In addition, goal-kicking accuracy declined significantly when the 
distance from goal was increased which provides further evidence for the popular notion 
to kick the ball ‘long and direct’ into the forward line. 
 
A surprising result was that goal-kicking accuracy did not differ significantly across 
home and away venues aside from set shots taken from outside the 50 meter arc. These 
findings are consistent with those of Varca (1980) who found no significant differences 
in field goal conversion rates for American college basketball teams playing either at 
home or away. Unlike basketball however, there is considerable variation in the playing 
field dimensions used in AFL football and thus inaccuracy should increase due to a lack 
of ground familiarity. In effect, this finding demonstrates the high adaptability of AFL 
footballers and provides further support for the multidimensional nature of their kicking 
skills. 
 
Analogous to McGarry and Franks (2000) study of penalty shootouts in international 
soccer, the results presented in Table 7 indicate that set shots taken from directly in 
front of goal are better taken by specialist goal-kickers. There was little variation in 
goal-kicking success across the four quarters during a game. However, an interesting 
finding was that set shots in front of goal from greater than 50 meters were significantly 
more accurate during the first quarter than an equivalent kick in either the third or fourth 
quarters. This may be a reflection of player fatigue during the latter stages of a game 
and demonstrates that where possible; kicking for goal from outside 50 meters should 
be implemented during the first half. 
 
To further examine the effects of player fatigue and heightened pressure on goal-
kicking, an analysis of accuracy during the final quarter of close games was employed. 
However, there was only minor variation in goal-kicking accuracy between close and 
non-close games. 
 
When assessing Docklands Stadium in comparison to all other AFL venues, accuracy 
levels were highest at the indoor stadium. Furthermore, despite it being a new stadium, 
the number of matches lost by teams when they could have won if more accurate than 
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their opponents was the lowest of all stadiums at 4.7%, or 13 of 275 matches. In stark 
contrast (see Table 10) other new outdoor stadiums have seen a high percentage of 
matches potentially lost as a result of inaccuracy.  The findings in Table 11 also 
demonstrate that indoor stadiums benefit both home and away teams in regard to goal-
scoring capabilities and fail to disadvantage the away team. However, this analysis 
merely examined goal-kicking accuracy and does not question the presence of home 
ground advantages such as ground familiarity or crowd factors which have been 
demonstrated in past research (Stefani & Clarke, 1992; Varca, 1980). 
 

CONCLUSION 
In this paper, we have investigated how goal-kicking accuracy in Australian Rules 
football varies as a function of distance, angle of shot and type of play. Notably, the 
type of player and venue also impact on goal kicking accuracy. The depth of inaccuracy 
cannot be underestimated, with potentially 10.7% of losses since 1995 attributed to 
errant goal kicking. We analysed the goal kicking accuracy of players at a multinomial 
level and found positional, play type, player and stadium significances. Extending this 
descriptive analysis, we intend to apply these findings to a tactical analysis whereby we 
investigate what the optimal path to goal should be based upon a series of field and type 
of play conditions. Other work could involve a more detailed look at complete misses 
for target and investigating the effect of rushing behinds on final match outcomes. In 
addition, a comprehensive examination of the interaction effects between the distance 
and angle from goal is necessary since these appear to be the primary determinants of 
the overall probability of scoring a goal. 
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ABSTRACT 
 
The rolling of a golf ball on a flat grass green forms a significant part of the game of 
golf.  Since putting strokes count for nearly half of the number of strokes taken in a 
regular game of golf, it is considered worthwhile to analyse this putting phase.  This has 
been difficult to achieve even on a flat green.  The putting surface is partly elastic and 
the grass springs back during the passage of the ball.  To investigate the matter more 
fully, a fast film was made of a golf ball rolling next to a large rule on a flat green.  
When a golf ball is hit by a golf putter it slips initially but then rolls purely.  In the 
experiment, a golf ball was released from a known height down an inclined plane and 
smoothly run onto the green.  Its position was then recorded at many time intervals until 
it came to rest.  The experimental results are compared with current models, including a 
constant-retardation model and the quadratic finite elastic model, which works well for 
heavier balls. 
 
KEY WORDS 
 
golf, putting, experiments 
  
INTRODUCTION 
 
The putting phase is a significant section of a round of golf, since more than 40% of the 
strokes taken in a professional golfer’s game are made on the greens.  A golf ball is 
0.0427m in diameter, and is almost spherical in shape except for a large number of 
concave dimples on its surface.  Its mass is 0.046kg, but the ball is not uniform in 
density throughout, consisting of a dense inner core, a less dense outer core of wound 
rubber and a thin plastic cover containing the dimples.  Therefore it is inappropriate to 
consider its moment of inertia (I) as 0.4ma 2 , where m represents its mass and a 
represents its radius. 
 
When a golf ball is hit by a putter, it leaves the club with an initial linear and angular 
speed.  Pure rolling only occurs when 
 

••

∅= ax         (1)
 

where 
•

x is the linear speed at any instant, and 
•

∅  is the ball’s angular speed at the same 
instant.  Therefore, it is almost assured that the ball will skid along initially (Thomas, 
2002).  To avoid this initial skidding, a club head in the shape of a horizontal circular 
cylinder was suggested by Daish (1972), but it has never been manufactured 
commercially.  To obtain the correct impact point for no skidding immediately on 
impact, the diameter of the club head should be 7/3 times the diameter of the golf ball, 
or almost 0.1m (Figure 1).  
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  Figure 1: Daish’s circular cylindrical putter 
 
However, most professional golfers use a flat-faced putter with slight angle of loft.  This 
causes the ball to skip over the top surface of the grass initially in almost imperceptible 
little hops.  This makes it difficult to analyse a golf putt, even on a flat green.   
 
An analysis of golf putting should also consider errors in the horizontal plane where by 
the ball is pushed or pulled away from its intended line of motion.  Cochran and Stobbs 
(1968) reported on experiments in which the ball was deliberately hit off-centre towards 
the toe or heel of the clubface.  The deviation was not enough to cause short putts to be 
missed, but for long putts the ball would not only miss the hole, but stop short.  The 
proper hitting speed is always judged from an assumption of hitting the ball with the 
centre of the club face, and golfers should be aware that off-centre putting reduces the 
value of the initial linear speed of the ball.   
 
Consequently, two modifications to putters were suggested by Cochran and Stobbs.  
The first was to mark on the top of the putting blade the point on the club face where the 
ball is to be contacted with the club.  The second was to shift the weight distribution of 
the club head, so that there is more weight at both the toe and the heel.  The club would 
then be less likely to twist in the grip during impact, making for greater consistency in 
direction and distance. 
 
Further developments have occurred with the golf putter leading to the Zen Oracle Tour 
Blade putter which contains a vertical hole in the putter’s head large enough to take a 
golf ball. This can be used for training, for aligning the putt, and it improves the 
stability of the head during the striking process (www.zenoracle.co.uk). 
 
A great deal more can be said (and has already been said by others) about the 
physiological, anatomical and psychological aspects of putting techniques.  Most of this 
has been adequately covered by Cochran and Stobbs. 
 
The purpose of this paper is to consider the theories developed so far for a rolling ball 
on a flat green, and to compare their predictions with the many experiments that I and 
my co-researchers (John Scott and Maurice Brearley) have carried out since 1993.  It 
proves to be useful to consider other balls besides golf balls, so that the difficulties 
associated with an analysis of golf putting can be pin-pointed. 
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CURRENT THEORIES 
 
Any theory concerning the rolling of a non-deformable ball on a deformable surface 
must be based on the observation that the ball will be retarded until it comes to rest or, 
in the case of a successful golf putt, drops into the hole. 
 
The initial speed of a putted golf ball depends on how hard the ball is hit, and this is 
governed by the distance from the hole that the putt is taken. For long putts, an accepted 
strategy is to aim for a pseudo-hole with the same centre as the real hole, but with a 
radius of approximately one metre.  If successful, the final putt should then be less than 
one metre. 
 
A putted golf ball will not roll purely in the early stages of a long putt across the green, 
but may do so in the latter stages, particularly during the last one metre of the putt.  
Therefore, two theories of motion are needed for these two different behaviours. 
 
The final stage of the putt, when the ball is rolling purely, lends itself to a classical 
dynamics analysis.  It has been shown (Scott and de Mestre, 1994) that the effect of air 
drag on a golf ball is negligible, except on very windy days. 
 

 
  Figure 2: Forces and couple on a rolling sphere 
 
 
If x denotes the distance that the ball has moved in the horizontal direction in time t ,  
then the Principles of Linear and Angular Momentum yield 
 

Fxm −=&&  (2)
          mgN −=0  (3)
     LFaI −=∅&&  (4)

 
where F and N are the horizontal and vertical components of the force exerted by the 
ground on the ball, L is the friction couple arising from the asymmetric foot print of the 
ball on the elastic deformable surface of the green, and a dot denotes differentiation 
with respect to time t. (Figure 2). 
 
In the most basic model, F is assumed to be constant and equation (2) integrates to  
 

F L

Direction of motion mg 
 
N 
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( ) VtmFtx +−= 2/2       (5)
 
where V  is the initial linear speed of the putt at the start of the pure rolling phase.  If T  
is the total time of this phase and X  is the distance covered during this phase, then the 
retardation constant F/(2m) can be evaluated from  
 

( ) ( ) 2/2/ TXVTmF −=  (6)
 
The only difficulty with this pure rolling model is that the retardation has to be assumed 
to drop instantaneously to zero at the end of the putt.  Note also that since the speed is 
zero at the end of the putt 
 

TVmF // =  (7)
 
Hence results (6) and (7) will only be consistent if  

VTX
2
1

=  (8)

which is a simple check on whether the ball has rolled purely with constant retardation 
during the whole of any experiment. 
 
When the ball is not rolling purely, Scott and de Mestre (1994) proposed a more 
complex model in which the frictional force F was assumed to be proportional to a 

power of 
•

x , while the ball rolls purely yielding a solution 
 

( )( )}{ XVTTtXx //11 −−=  (9)
 
and therefore 
 

}{ VTXXxVx /1/1 −−=&  (10)
 
The model is based on the condition that the ball should stay at rest when it finally 
comes to rest, but it over predicts the intermediate distances of experimental putts. 
 
To take account of the elasticity of the grass on the green, finite elastic strain theory was 
employed by Brearley and de Mestre (2004).  This pure-rolling model produced a 
frictional cum elastic force in the form 
 

2xCxBAxm &&&& +−−=  (11)
 
with initial conditions ,0=t ,0=x  Vx =& as before.  The solution is 
 

x = A1 + A2t− A3 exp 1+ A4 exp −A5T( )[ ] (12)
 
where ( )51 toiAi =  depend on the constants A/m, B/m, C/m. 
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THE EXPERIMENTS 
 
Since 1993 my colleagues and I have conducted rolling-ball experiments using golf 
balls, lawn bowls with the bias counteracted, bowling jacks, steel balls and billiard 
balls. 
 
In the early experiments with golf balls, the ball was propelled by a putter over 
distances of less than 1 metre, and a fixed video camera (25 frames/second) recorded 
the position of the ball at specified times. The green used was a chipping green, and the 
ball bounced along in little hops indicating that pure rolling was not occurring (Scott 
and de Mestre, 1994).   
 
To see if this occurred for all hard balls on a soft surface , a billiard ball was rolled 
down a ramp inclined at approximately °30 and ran across a carpet for a distance over 2 
metres. The ramp enabled the velocity of the ball to be determined at the beginning of 
the carpet.  A video camera was mounted on a trolley which ran on rails keeping up 
with the ball. The agreement between the constant retardation theory and the experiment 
was exceedingly close. 
 
In 2001, experiments were conducted with a golf ball rolling down a ramp and across a 
green. The results were compared with the finite elastic strain model, since it was felt 
that the constant-retardation model could not apply to a golf ball. The time that the ball 
passed various markers was obtained using a multi-functional stop watch. The 
agreement between calculated and observed results was poor, presumably because a 
golf ball is too light to enforce the no-slip condition upon which the theory is based. 
 
Experiments were next conducted on a bowling rink using respectively a lawn bowl 
(unbiased), a jack, and a steel ball which was the same size as the jack. Thus the steel 
ball and jack were smaller in size than a golf ball but much heavier. They were released 
down a ramp and ran for distances ranging from 5.45 to 18.33m.  The agreement 
between finite elastic theory and experiments was very good for all these balls.  
However when similar experiments were conducted with a golf ball, on the same day 
over distances ranging from 2.9 to 6.75m, no such agreement could be obtained 
(Brearley and de Mestre, 2004). Again this indicated that the golf ball was hopping, but 
the others were rolling purely. 
 
Therefore, we decided to obtain more detailed observations of the initial run of a golf 
ball on a green. In 2005 a hired Fastec Troubleshooter High Speed portable video 
camera was used with 640 x 480 resolution providing 125 frames/second 
(www.slowmotion.com.au).  A lawn bowl and a golf ball where rolled down a ramp 
onto a practice putting green at Paradise Springs Golf Course, Robina.  The lawn bowl 
had tape on its side and the golf ball had a great circle marked on it so that the change in 
angle could be recorded with time.  All lawn bowl and short-distance golf experiments 
indicated that pure rolling was occurring.  However the longer-distance golf 
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experiments showed that the golf ball was rising and falling by a few millimetres as it 
moved over the green, which indicated that long putts were not satisfying the pure-
rolling conditions. This confirmed the observations made by Scott and de Mestre 
(1994). Quantitative measurements of these longer experiments were also restricted, as 
the ball came to rest well beyond the length of the 1-metre measuring rule. A 
representative summary of all these experiments is given in Table 1 below. 
 
                           Table 1: Summary of typical experiments   

Object Surface How 
Launched 

Total T  (s) Total X  
(m) 

Initial V  
(m/s) 

Pure 
Rolling 

Golf 1993 
Golf 1993 

Grass 
Grass 

Putter 
Putter 

1.52 
1.52 

0.83 
0.78 

1.05 
1.0 

No 
No 

Golf 1994 
Golf 1994 

Grass 
Grass 

Putter 
Putter 

1.4 
0.96 

0.94 
0.47 

1.15 
0.75 

No 
No 

Billiard 1999 Carpet Ramp 3.92 2.41 1.2 Yes 
Golf 2001 
Golf 2001 

Grass 
Grass 

Ramp 
Ramp 

4.66 
3.07 

6.78 
2.89 

3.58 
2.08 

No 
No 

Bowl 2002 
Bowl 2002 

Grass 
Grass 

Ramp 
Ramp 

11.02 
8.31 

18.33 
9.91 

3.48 
2.62 

Yes 
Yes 

Jack 2004 
Jack 2004 

Grass 
Grass 

Ramp 
Ramp 

8.49 
7.88 

14.81 
12.22 

3.53 
3.14 

Yes 
Yes 

Steel 2004 
Steel 2004 

Grass 
Grass 

Ramp 
Ramp 

6.68 
5.19 

11.53 
6.63 

3.51 
2.66 

Yes 
Yes 

Golf 2004 
Golf 2004 

Grass 
Grass 

Ramp 
Ramp 

4.66 
3.23 

6.75 
4.50 

3.58 
2.72 

No 
No 

Golf 2005 
Golf 2005 

Grass 
Grass 

Ramp 
Ramp 

1.96m 
? 

0.80 
>1m 

0.85 
1.00 

Yes 
No 

 
 
 
AN INTERESTING ANALYSIS 
 

The ( ) −xt, values for all experiments were revisited, and plotted using Excel’s Chart 
Wizard.  Upon investigation of the trend lines, every experiment indicated a quadratic 
fit with correlation coefficients greater than 0.98.  
 
For the lawn bowl, jack, steel ball and billiard ball, the coefficient of t agrees with the 
initial speed calculated at the bottom of the ramp, while the coefficient of 2t is constant 
for repeated experiments with the same ball launched from different heights on the ramp 
on the same day.  The term independent of t  was very small in all these cases, 
indicating that the constant-retardation model seemed applicable for all the above balls, 
since they roll purely over nearly all of the distance moved. In addition, equation (8) is 
well satisfied for the billiard ball, jack and steel ball. So it appears that the constant-
retardation solution (5) is just as effective for these balls as the finite elastic strain 
solution (12). Equation (8) is not so well satisfied by the lawn bowl, but this would be 
due to the significant effect of air drag because of the lawn bowl’s much larger size.    
 
However the golf ball experiments do not have these properties.  Although they fit well 
a quadratic relation between x  and t , the coefficient of 2t is not the same for each 
experiment with the same ball and different initial speeds on the same day. This mirrors 
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the difficulty found by Brearley and de Mestre (2004) using the finite elastic strain 
model. 
 
Nevertheless the high-resolution 2005 experiments do show that, for golf balls released 
down a ramp and travelling only a short distance (i.e. low initial speed at the bottom of 
the ramp), the motion of the ball is one of pure rolling.  But as soon as the speed reaches 
a critical value at the bottom of the ramp, by release of the ball at a higher point on the 
ramp, the ball starts to bounce across the deformable green surface.  This also happens 
for long putts with a golf club.  Since no theory is yet available to describe accurately 
this hopping behaviour, it appears that the current best alternative is to assume a 
pseudo-constant-retardation model as an average of that which is really happening.  
This means that, with knowledge of an initial speed V and an average retardation 
constant ( )mF 2/ , the distance of the putt can be estimated from equation (5).  Perhaps 
this is what a golfer’s brain does during his or her practice putts before a game anyway? 
 
 
CONCLUSION 
 
Putting by professional golfers usually involves two putts, a long one to arrive near the 
hole and a short one that hopefully drops the ball into the hole.  A suitable model for the 
short putt (and the last metre of the long putt) is the constant-retardation model, 
neglecting the last few milliseconds when the acceleration drops sharply to zero. The 
experiments also indicate that the constant-retardation model is suitable for heavier balls 
which all appear to roll purely. 
 
No suitable model has yet been determined for long golf putts, because the ball is light 
and not rolling purely, but hops along the top of the grassy surface.  The more 
complicated problem of long putts on a sloping green cannot be analysed until a 
successful long-putt model on a flat green is resolved. 
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ABSTRACT 

Coaching aims to improve player performance and coaches have a number of coaching 
methods and strategies they use to enhance this process. If new methods and ideas can be 
determined to improve player performance they will change coaching practices and 
processes. This study investigated the effects of using low compression balls (LCBs) during 
coaching sessions with beginning tennis players. In order to assess the effectiveness of 
LCBs on skill learning the study employed a quasi-experimental design supported by 
qualitative and descriptive data. Beginner tennis players took part in coaching sessions, one 
group using the LCBs while the other group used standard tennis balls. Both groups were 
administered a skills at the beginning of a series of coaching sessions and again at the end. 
A statistical investigation of the difference between pre and post-test results was carried out 
to determine the effect of LCBs on skill learning. Additional qualitative data was obtained 
through interviews, video capture and the use of performance analysis of typical coaching 
sessions for each group. The skill test results indicated no difference in skill learning when 
comparing beginners using the LCBs to those using the standard balls. Coaches reported 
that the LCBs appeared to have a positive effect on technique development, including 
aspects of technique that are related to improving power of the shot. Additional benefits 
were that rallies went on longer and more opportunity for positive reinforcement. In order 
to provide a more conclusive answer to the effects of LCBs on skill learning and technique 
development recommendations for future research were established including a more 
controlled experimental environment and larger sample sizes across a longer period of time. 
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INTRODUCTION 

One aim of a tennis coach is to improve player performance, and coaches will have a 
number of coaching methods and strategies they can employ to enhance this process. In 
addition, the knowledge base that underpins the coaching process is constantly changing 
due to research in coaching methodology and individual experiences (Fairweather, 1999). 
Such changes can take the form of alternative coaching styles and the use of new activities 
or equipment, amongst others. If new methods and ideas can be determined to improve 
player performance they can affect future coaching practice and enhance the coaching 
process. LCBs are typically used in modified versions of the game of tennis such as mini-
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tennis (Cayer & Elderton, 2002; LTA, 2005). The balls used in these versions are variations 
of the standard ball that are softer, lighter and have lower bounce. The Lawn Tennis 
Association (LTA) also suggests that for very young players (4 - 8 years) the ball could be 
larger in order to make the game slower (LTA, 2005). While mini-tennis focuses on 
children the LTA suggest that beginners of all ages would benefit from playing the game 
with the slow moving balls, making skill learning easier.  

Typically research involving tennis balls has used the standard type of ball or a standard 
ball that was modified by the researcher (Haake et al., 2003; Knudson, 1993; Mehta & 
Pallis, 2001). Recently the ITF (International Tennis Federation) have modified tennis ball 
specifications to include a faster (type 1) and slower, oversized (type 3) ball, to accompany 
the standard medium speed (type 2) ball which has the same ITF specifications that existed 
prior to 2000 (ITF, 2005). The new balls were developed in order to provide a greater 
degree of consistency to the game, the slowest ball to be used on fast courts the fastest ball 
on slow courts (ITF, 2005). Such changes have led to research on the effects of the new 
balls (particularly type 3). Metha & Pallis (2001) demonstrated that the larger cross-
sectional area of a type 3 ball (approx. 6% bigger than type 1/2) increased drag on the ball, 
increasing the ball's flight time, which slows down the game. Research also suggests that 
the type 3 ball has the potential to change characteristics of game play, the type 3 ball 
having been shown to lead to less physiological strain and increased accuracy on a tennis 
skills test compared to the type 2 ball (Cooke & Davey, 2005). Cooke & Davey suggested 
that the improved accuracy of ground strokes with the type 3 ball may be beneficial to 
players with limited technical skills, such as those in the early stages of learning. 

There are many dimensions to the coaching process, one important aspect being the 
development of skilled performance in players. As a result research has been conducted 
into the theory and practice of the coaching process aimed at improving skill learning, 
leading to recommendations for best coaching practice (Hodges & Franks, 2002; Schmidt 
& Lee, 1999). Challenges to the traditional style of coaching have led to the development 
of the game-based approach to coaching (Thorpe & Bunker, 1982). The success of this new 
method resulting in Tennis Coaches Australia (TCA) adopting the game-based approach to 
coaching as their preferred model (TCA, 2002). The use of non-traditional methods have 
also been investigated in younger players, where a series of pre-tennis activities using mini-
tennis equipment led to improvements in fundamental motor skill acquisition in 5 year olds. 
This suggests that such improvements would ease the transition to learning specialist tennis 
skills (Quezada et al., 2000). In addition to modifications of coaching style, many 
researchers have investigated the use of new techniques or modified equipment on skill 
acquisition. Focusing on tennis, the types of techniques investigated include the effects of 
visualisation strategies and aids to performance as well as player reaction or movement 
time when playing with the larger type 3 ball (Andrew et al., 2003; Singer et al., 2001). 

The purpose of this study was to investigate the effectiveness of LCBs on skill learning in 
beginners participating in an eight-week tennis coaching programme. Specifically, we 
investigated the effects of using low compression balls (LCBs) during regular coaching 
sessions on skill learning for beginning tennis players.  
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METHODS  
Beginner tennis players took part in coaching sessions, one group using the LCBs while the 
other group used conventional (standard) balls. Both groups were administered a skills test 
at the beginning of a series of eight coaching sessions (pre-test) and again at the end (post-
test). A statistical investigation of the difference between pre and post-test results was 
carried out to determine the effect of LCBs on skill learning. Additional qualitative data 
was obtained through interviews, video capture and the use of performance analysis 
software to analyse typical coaching sessions for each group. These multiple methods of 
data collection allowed for triangulation of data. 

Fourteen boys and girls aged 5-11 years volunteered to participate in the study, they were 
members of a weekly beginners' class at a private tennis centre located in New South 
Wales. The participants were classified as beginners by the head coach and then self-
selected into coaching groups, these groups were randomly assigned to an experimental or 
control condition. The experimental group used LCBs and the control group used standard 
balls. Information regarding demographics of each group is provided in Table 1. The 
beginners coaching programme was developed and overseen by the head coach, a level 2 
accredited tennis coach with 26 years experience. The coaches responsible for delivering 
the sessions were all employees of the tennis centre. The coaching programme was 
consistent for both groups, in terms of strokes, drills and activities so that the coaching 
content and time was the same for both groups throughout the study. 

Table 1: Age, gender and previous experience of participants by group 

Group n Age (Mean±SD) Gender Prev.Experience 
(Mean±SD) 

LCB 6 6.67 ±1.03 yrs Male = 4 Female = 2 0.50 ±0.42 yrs 
Standard 8 9.38 ±1.19 yrs Male = 6 Female = 2 1.06 ±0.72 yrs 

 
In order to describe the two types of ball used in the study, three LCBs and standard balls 
were randomly selected and their mass and size recorded. The LCB group used low 
compression balls that were softer, lighter and similar in size to the standard balls used in 
the study (Table 2). 

Table 2: Mass and diameter (Mean ±SD) of LCB and standard ball 

Tennis Ball n Mass (g) Diameter (mm) 
LCB 3 46.08 ±0.69 73 ±0 
Standard 3 57.58 ±0.16 72 ±0 

 
It is recommended that young children play tennis with a shorter, lighter racquet than adults 
(Cassell & McGrath, 1999; Harding, 1991). In this study children performed their skills test 
using a Pro Kennex Champ Ace Junior racquet suitable for their age (Cooper, 2005), all 
racquets being the same model. The participants underwent a traditional coaching 
programme, aimed primarily at introducing and developing forehand, backhand and serving 
skills. The sessions typically contained a warm up, drills, modified games and a cool down. 
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The sessions took place on an Astroturf court with regulation height nets. Each group 
attended one coaching session a week for eight weeks, sessions lasted for one hour. 

A skill test was administered to each participant independently to establish performance 
levels prior to the study (pre test) and after the period of coaching (post test). The test was 
developed specifically for the study, in line with the coaching programme the three items 
tested were the forehand, backhand and serve. A review of the literature on existing skill 
tests and consideration of the participants' ability, learning context and time available for 
testing contributed to the development of the skill test, specific to the game of tennis. Skill 
test data was collected at the same venue as the coaching sessions. The pre-test occurring 
during week one and the post-test during week eight. Prior to the first test session age, 
gender, previous playing experience and hand dominance were recorded for each 
participant. Subjects were tested on the 3-item skills test. Verbal instruction and a 
demonstration were provided prior to testing each item, as well as indications of the scoring 
system. The same researcher administered all tests. For each participant, their score for 
each test trial on all three items (forehand, backhand and serve) were recorded and totalled 
(total test score). The score available for each trial ranged from 0-5, so a maximum total 
score of 90 could be achieved for the 3 test items across 6 trials each. For the skill test data, 
differences in total test scores between pre test and post test for both groups were analysed 
using the Kruskal-Wallis Test, in order to look for significant differences between groups. 
Skill test data was reported using group means and standard deviations. % difference 
calculations were used to compare a typical coaching session structure for each group. 

A typical coaching session was videoed for both groups during week four of the coaching 
programme. The purpose of this was to obtain a record of a typical session and determine 
whether both groups spent similar amounts of time on each phase. A Macintosh OSX 
computer was linked to a digital 8 video camera so that the session content could be 
analysed using GameBreaker( Performance Analysis Software  (GPAS) and excel. The 
GPAS was customised to allow the frequency and duration of each phase of the session to 
be logged in order to determine the typical session structure and amount of time spent on 
each phase of the session for both groups. Initially these events were logged on site while 
the sessions were in progress and edited as necessary during the post session. Table 3 lists 
the events logged to establish typical session content using the GPAS. 

Table 3: Events used to analyse a typical coaching sessions for both groups. 

Event Explanation 
INTRODUCTION & WARM-UP Start to end of introductory / warm up activity(s) 
DRILL/SKILL PRACTICE Activity where groups practice whole or part tennis 

skills not including warm-up / cool-down activities 
MODIFIED GAME Game based / competition based activity involving 

whole or part tennis skills not including warm-up / 
cool-down activities of drill/skill practices 

COOL-DOWN & DEBRIEF Concluding game, activity, group address/debrief 
COLLECTING BALLS Whole group involved in collecting balls 
GROUP INSTRUCTION Whole group stopped for coach instruction/demo. 
INDIVIDUAL INSTRUCTION Individual/small groups stop for instruction/demo. 
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The coaches responsible for overseeing or coaching the weekly sessions were interviewed 
individually. Each coach was asked questions regarding their coaching experience, their 
approach to the coaching sessions and their perceptions on the effect of the LCBs on skill 
learning for players in the LCB group compared to those in the standard ball group. Each 
interview lasted approximately 30 minutes. The interviews transcriptions were analysed to 
identify categories of response made by interviewees. Individual categories that related to 
the responses for each question were derived and the substantive statements assigned into 
one of these (Gillham, 2000), allow for summaries of key points. 

 

RESULTS AND DISCUSSION 

The results of session content analysis for a typical session, indicate that both groups were 
receiving similar content and amount of time spent on each activity. Table 4 indicates the 
percentage time each group spent on each phase of the session and how long participants 
were involved in collecting balls or being instructed by the coach. 

Table 4: Percentage of time spent on each phase of session & difference scores for groups 

Event % Time on each 
event (LCB Group) 

% Time on each 
event (Standard Group) 

% Difference 

Intro & Warm-up 10.06 7.17 2.89 
Drill/Skill Practice 27.9 32.58 -4.68 

Modified Game 20.12 15.86 4.26 
Cool-down/Debrief 7.06 6.54 0.52 

Collecting Balls 9.27 5.35 3.92 
Group Instruction 29.31 33.39 -4.08 

Individual Instructn. 7.42 6.69 0.73 
 
Table 4 shows the difference in time for each group is less than 5% for all events, the 
absolute difference between groups for each event ranging from 0.52% to 4.68%. A 
difference of less than 5% is generally considered acceptable when comparing the 
differences between two groups (Hughes & Franks, 2004). Data presented only represents 
one session for each group and cannot generalise to all sessions. However, these results do 
give an indication of the similarity of activities that both groups experienced throughout the 
study. In addition, the coaches strived to ensure that as many aspects of the session 
structure as possible was similar for both groups. A summary of the total skill test scores 
for pre and post tests and the difference scores (representing post-test score minus pre-test 
score) for each group is provided in Table 5.  

Table 5: Summary of skill test scores (total score) for both groups. 

Group n Pre Test Score 
(Mean ±SD) 

Post Test Score 
(Mean ±SD) 

Difference Score 
(Mean ±SD) 

LCB 6 15.67 ±13.63 27.00 ±14.67 11.33 ±7.97 
Standard 8 43.88 ±8.08 51.75 ±12.27 7.88 ±15.11 
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A positive difference score indicates improvement on the skills test between pre and post 
test, the larger the score the greater the improvement. The results show that the LCB group 
had a larger mean difference score (11.33 ±7.97) than the standard group (7.88 ±15.11). 
The difference in pre and post test (total) scores for each group were compared using the 
Kruskal-Wallis test, to determine whether the difference between the groups was significant 
and  could be attributed to using the LCBs during the coaching sessions. The results of the 
statistical analysis (Table 6) indicate that the difference between groups was not significant 
(p > 0.05). A non-significant result suggests that using the LCBs during beginners coaching 
sessions over an eight week period does not significantly increase performance on a skills 
test when compared to a group of beginners coached using standard balls. 

Table 6: Results of statistical analysis of skill test difference scores (post test - pre test) 

χ2 statistic df Asymp Sig. Test Significant 
0.038 1 0.846 No 

 
Analysis of Figure 1, shows that the LCB group had a much lower mean score for the pre-
test than the standard group (Table 5), suggesting that there were differences between the 
skill level of the two groups at the start of the study. At the end of the study the LCB group 
still had the lowest performance scores but had improved the most (although not 
significantly), such a trend follows the observations of Boyle and Ackerman (2003) where 
the lower performers initially remain the lowest performers at the end of a period of skill 
acquisition but have shown the biggest gain in improvement. 
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Figure 1: Mean skill test scores (total) for pre and post test for LCB and standard groups 
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The initial differences in skill level between the two groups could have been influenced by 
the differing characteristics of the participants in both groups, such as age and previous 
experience (Table 1). Age has been linked to the stage of motor development a child is in 
(Gallahue & Ozmun, 1997). The mean age of the LCB group (6.67 ±1.03 yrs) suggests that 
the majority of participants would still be developing their fundamental movement skills. 
The standard group, however, had a mean age of 9.38 ±1.19 years, indicating that the 
majority of participants in that group are more likely to have refined their fundamental 
movement patterns and progressed to a more advanced phase of motor development where 
they are more capable of developing the skills needed to play tennis (Gallahue & Ozmun).  

It is suggested in the literature that children who attempt to learn specialist movement skills 
before they have developed the mature form of the fundamental movement skills necessary 
to perform the specialised movement, may be hindered in their progress (Gallahue & 
Ozmun, 1997). Therefore, due to the mean age of the LCB group it is possible they had not 
refined their fundamental movement skills prior to commencement of this study, which 
could result in less capability for the LCB group to learn specialised tennis skills such as 
the backhand stroke. In addition, the standard group was shown to have had more previous 
tennis coaching (1.06 ±0.72 yrs) than the LCB group (0.50 ±0.42 yrs). Although the 
difference between groups was not significant the mean difference scores for the LCB 
group were slightly higher than for the standard group (Table 5). Investigating the data by 
item it reveals that the LCB group showed the greatest improvement in the forehand stroke 
than any other, whereas the standard group showed the greatest improvement in the 
backhand score, both groups showed least improvement in the serve (Figure 2).  
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Figure 2: Mean skill test difference scores (pre - post test score) by item for each group 
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The focus of the interviews was the approach to the coaching sessions by the coaches and 
the observed effects of the LCBs on the learners' performance. There was agreement 
between coaches that they had followed a similar programme, which involved a 
combination of traditional approaches to coaching with a contemporary style, including fun 
participation games. Additionally activities provided in the TCA coaching manual and from 
Tennis Australia (TA) seminars were included. To ensure consistency the head coach 
monitored the sessions, with regular feedback to the coaches. 

Regarding effects of the LCBs on learners' performance the coaches felt that the LCBs had 
the most positive effects on complete novices and the youngest players. Coaches suggested 
that players were aided by the lower ball bounce if they had no experience playing with the 
standard balls. For players with previous experience, using the LCBs were reported to have 
a negative effect on their attitude as these players considered using the LCBs as taking a 
step backwards. One coach reported that for accomplished beginners their confidence went 
down initially although this did not seem to be a problem after a couple of weeks. There 
was general agreement between the coaches that even for the beginners with previous 
experience the LCBs were good for overall development, especially development of 
technique. A similar point was observed for the less experienced beginners where one of 
the coaches indicated that it was easier to teach them the correct technique of hitting from 
low to high as the LCBs bounce closer to waist height.  

The advantages of the LCBs in allowing technique development in children is that they can 
be taught the correct style, such as stepping in and hitting the ball as well as hitting from 
low to high with the ball remaining in court. One coach suggested that teaching players to 
step in and hit when using the standard balls often resulted in the ball being hit out of court 
as players at this level are not capable of applying the appropriate spin to keep the ball in 
court. The LCBs were reported as having a positive effect as they allowed correct technique 
to be taught yet allow rallies to continue and in turn provide greater positive reinforcement 
to the players. No major gender differences regarding the effect of the LCBs on learning 
were reported. Whilst interviews with coaches pointed to the benefits of using LCBs for 
technique development, there was no evidence from this study to suggest that these benefits 
will transfer to playing with the standard balls. 

 

CONCLUSION 

The skill test results indicate there is no difference in skill learning when comparing 
beginners coached using the LCBs to those coached using the standard balls. The non-
significant differences between groups could have also been affected by differences in 
mean age and previous experience characteristics of the groups and the relatively short 
amount of practice time between the initial and final skills test. The coaches' reported that 
the LCBs appeared to have a positive effect on correct technique development in beginners 
including aspects of technique that are related to improving the power of the shot without 
the ball going out of court as much as when coaching with the standard ball. Additional 
benefits were that rallies went on longer providing more playing time and more opportunity 
for positive reinforcement. In order to provide a more conclusive answer to the effects of 
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LCBs on skill learning and technique development in beginners, recommendations for 
future research are suggested in the next section. 

There were limitations imposed on this study that contributed to inconclusive results and 
these should be addressed in future research. Firstly, time and budget constraints 
determined the study had to be conducted within one school term, with the number of 
coaching sessions limited to 6x1 hour sessions between pre and post tests, limiting time for 
skill learning to take place. Future research would benefit from a longer period of coaching 
to ensure sufficient time for improvement, providing a more accurate assessment of LCB 
effect. Secondly, although participants were classified as attending the 'beginners' class, 
there were differing ages and levels of experience between the groups. Ages and playing 
experience should be standardised across control and experimental groups. Finally, results 
and observations from this study would suggest a more controlled, longitudinal study 
would enhance understanding of the effects of LCBs on beginners' skill learning.  
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ABSTRACT 
Many studies have investigated the kinematics of sports skills with the majority 
describing the kinematics of the technique or investigating significant kinematic 
variables that affect performance. Many sports skills are complex three-dimensional 
movements involving many joints. However, few studies have investigated the 
relationships between kinematic variables during performance of such skills. The aim of 
this study was to investigate the inter-relationships among three-dimensional kinematic 
variables during performance of a lofted instep soccer kick. A motion analysis system 
was used to collect kinematic data for 13 skilled amateur soccer players attempting a 
standardised lofted instep kick. Three-dimensional angular displacement patterns were 
reported for the thoracolumbar spine and right hip joints. Two-dimensional angular 
displacement data was reported for the right knee and ankle joints. An exploratory 
rather than confirmatory factor analysis was applied, as there is currently no established 
theory regarding the kinematics of a lofted instep kick. Factors were extracted using the 
Maximum Likelihood Solution and orthogonally rotated using Varimax with Kaiser 
normalisation. The inter-relationship among biomechanical variables within the seven 
extracted factors was analysed with each factor revealing previously unknown inter-
relationships among variables for different aspects of the kick. The use of exploratory 
factor analysis has shown the complex three-dimensional kinematic inter-relationships 
for a lofted instep kick. An understanding of these relationships could prove useful to 
coaches when instructing, and in the development of coaching programmes related to 
the lofted instep kick. 

 

KEY WORDS 
soccer, kicking, three-dimensional kinematics 

 

INTRODUCTION 
The most widely studied skill in football is kicking (Lees and Nolan, 1998), with the 
majority of studies reporting on the two-dimensional (2D) and three-dimensional (3D) 
kinematics of the low or maximum velocity instep kick (Lees and Nolan, 2002, Lees et 
al., 2005, Isokawa and Lees, 1988, Barfield et al., 2002, Levanon and Dapena, 1998, 
Shan and Westerhoff, 2005). There are many types of kick used in a game of football, 
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including the lofted instep kick, the aim of which is to propel the ball high and over 
long distances. Few studies have analysed the 3D kinematics of a lofted instep kick 
(Browder et al., 1991, Prassas et al., 1990). 

An understanding of the biomechanics of kicking can assist the coaching process (Lees, 
2003). Coaching experience, combined with knowledge of a mechanical model of the 
desired performance, is regarded as necessary for a coach to correct performance 
(Elliott, 2001; Lees, 2002). More studies on the lofted instep kick are needed to provide 
detailed information on the kinematics of the skill and ensure that existing coaching 
literature is correct (Prassas et al., 1990). Anderson and Sidaway (1994) analysed the 
co-ordination of the low instep kick using timing variables and angle-angle plots. Few 
studies have used a factor analysis (or similar technique) to examine relationships 
between kinematic variables in kicking (Hodges et al., 2005). 

The purpose of this study was to identify and interpret the inter-relationships amongst 
3D kinematic variables for a lofted instep kick. As there is currently no established 
theory regarding the kinematics of a lofted instep kick, an exploratory rather than 
confirmatory factor analysis was applied to summarise the kinematic data. 

 

METHODS 

Thirteen male and female skilled amateur soccer players (23.9 ±6.1 yrs; 74.7 ±12.0 kg; 
172.7 ±9.9 cm, previous experience 13.9 ±6.0 yrs), volunteered for the study. During 
data collection subjects were required to perform 20 trials of a right-foot lofted instep 
kick. They were required to take a two-step angled approach of 45 - 60° towards a 
stationary soccer ball and kick the ball over a 2m high net aiming for a target (which 
represented a kick of approximately 35m). The emphasis of the task was on height and 
distance not accuracy. Successful kicks were categorised according to distance, 15- 
27.6m, 27.7-34.9m and 35m+. Twelve retro reflective markers were used to define the 
thorax, pelvis, thigh, knee and foot, two markers were placed on the ball. Subjects were 
videoed using a four camera (50 Hz) motion analysis system. Up to three trials from 
each distance category were selected for further processing and analysis. 

Video data of each kick from final toe-off of right foot preceding foot-ball impact to end 
of active follow-through, was digitised and processed using Peak Motus version 7.0. 
Spatial data was optimally filtered, the level chosen by the Jackson Knee Point Method 
and all angles calculated relative to a neutral standing posture. Post impact resultant ball 
velocity and pre impact resultant foot velocity were calculated manually from scaled co-
ordinate data. 3D angular displacement patterns were reported for the thoracolumbar 
spine (relative motion between thorax and pelvis) and right hip joints. 2D angular 
displacement data was reported for the right knee and ankle joints. Range of motion 
(ROM) during follow-through for each joint was also calculated. 

The kinematic variables for the thoracolumbar spine, right hip, knee and ankle joints 
chosen for inclusion in the exploratory factor analysis were: peak angular displacements 
between toe-off and foot-ball impact; angular displacements at toe-off, heel-strike and 
impact; and, ROM during follow-through. Additionally angular displacement data was 
time normalised between toe-off and foot-ball impact and timing of peak values were 
then reported as a percentage of total kick time. Timing of peaks were included in the 
analysis as were horizontal, vertical and resultant post-impact ball velocities and 
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resultant pre-impact foot velocity. Due to an insufficient number of 35m+ kicks in 
relation to the number of biomechanical variables, kicks of all distances were included 
in the exploratory factor analysis.  

The factor analysis was carried out using SPSS version 11.0. Factors were extracted 
using the Maximum Likelihood Solution and orthogonally rotated using Varimax with 
Kaiser normalisation. Cattell’s scree test (Stevens, 1996, Kim and Mueller, 1978) was 
used to determine the number of factors to be extracted. Examination of the scree plot 
indicated that no more than seven factors should be extracted. Factors were extracted 
from the rotated factor matrix by selecting variables with a factor loading of ≥ | 0.4 | for 
inclusion within that factor (Stevens, 1996, Hair et al., 1998). As a result a few variables 
were common to more than one factor. Timing of peak hip extension, abduction and 
external rotation, thoracolumbar spine extension, knee flexion, ankle plantar-flexion and 
ankle ROM during follow-through and foot velocity were poorly represented in the 
factor solution. As a result they were omitted from the interpretation of each factor. 

 

RESULTS 
Table 1 shows that the first seven factors obtained from the following factor analysis 
accounted for 67.6% of the variance. Factor one appears dominant, accounting for the 
largest amount variance (19.87%), subsequent factors account for decreasing amounts. 

Table 1: Total variance explained by the first seven factors. 

Initial Eigenvalues Factor 
Total % of Variance Cumulative % of 

Variance 
1 11.523 19.868 19.868 
2 6.304 10.868 30.736 
3 5.679 9.791 40.527 
4 4.804 8.284 48.810 
5 4.115 7.095 55.906 
6 3.539 6.101 62.007 
7 3.254 5.610 67.618 

 

Factor one (Table 2) was largely influenced by hip rotation and abduction variables. A 
decrease in hip joint internal rotation at impact and point of maximum internal rotation 
(heel-strike to impact) was associated with an increase in external hip joint rotation at 
toe-off, heel-strike and also peak motion (toe-off to heel-strike). Hip abduction angles at 
point of maximum (between heel-strike and impact) and impact increased along with 
the hip joint external rotation variables and hip extension at toe-off. The combination of 
increased hip abduction, external rotation and extension at toe-off indicated that the 
more hip extension at toe-off and external rotation in the earlier part of the kick (toe-off 
to heel-strike), the more hip abduction between point of maximum and impact. 
Decreased impact angles for hip internal rotation, and increased hip abduction and 
thoracolumbar spine rotation (thorax to right, pelvis to left) angular displacements, are 
seen to relate to increased knee flexion, at impact. Thus, hip motion prior to and at 
impact is associated with knee flexion at impact. This association may be result of 
compensatory movement by the knee to ensure appropriate foot placement at impact.  
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Table 2: Summary of inter-relationships for kinematic variables in factor one. 

Column 1 
Variables increasing / decreasing together 

Column 2 
Variables increasing / 

decreasing together & opposite 
to those in column 1 

Peak hip external transverse rotation Hip internal rotation @ impact 
Peak hip abduction Hip peak internal rotation  
Hip transverse rotation ROM during follow-through  
Hip abduction @ impact  
Thoracolumbar spine transverse rotation ROM 
during follow-through 

 

Thoracolumbar spine flexion/extension ROM during 
follow-through 

 

Hip external transverse rotation @ heel-strike  
Thoracolumbar spine abd/adduction ROM during 
follow-through 

 

Hip external transverse rotation at toe-off  
Hip flexion / extension ROM during follow-through  
Hip extension @ toe-off  
* Thoracolumbar spine transverse rotation (thorax to 
R, pelvis to L) @ impact 

 

* Hip abd / adduction ROM during follow-through  
* Knee flexion @ impact  
* Variables loading more strongly on other factors 

Factor two (Table 3) indicates that increased knee flexion of the kicking limb at heel-
strike is associated with an increase in peak knee flexion (heel-strike to impact) slightly 
later in the kick. Hip joint abduction at toe-off and heel-strike increases in line with the 
knee flexion variables suggesting that increased hip abduction in the earlier stages of the 
kick is related to increased knee flexion later. 

Table 3: Summary of inter-relationships for kinematic variables in factor two. 

Column 1 
Variables increasing / decreasing 

together 

Column 2 
Variables increasing / decreasing together & 

opposite to those in column 1 
Peak knee flexion Ankle plantar flexion @ toe-off 
Knee flexion @ heel-strike Min ankle plantar flexion 
* Hip abd / adduction ROM in follow - 
through 

Max ankle plantar flexion 

Hip abduction @ heel-strike Time of peak thoracolumbar spine transverse 
rotation: thorax to L, pelvis to R  

Hip abduction @ toe-off Time of min ankle plantar flexion 
 Ankle plantar flexion @ heel-strike 
 Time of peak hip internal transverse rotation 
 Ankle plantar flexion @ impact 
* Variables loading more strongly on other factors 
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Increases in hip joint abduction early on in the kick (at toe-off and heel-strike) also 
relate to increases in hip abduction/adduction ROM in follow-through. Increases in 
these hip abduction and knee flexion variables are associated with a decrease in plantar 
flexion of the ankle throughout the entire kick. A decrease in plantar flexion of the ankle 
at toe-off is associated with decreased plantar flexion values at heel-strike and impact as 
well as smaller maximum/minimum values. 

Factor three (Table 4) indicates that an increase in thoracolumbar spine adduction 
(thorax up on right, pelvis down on right) at toe-off is associated with increased 
thoracolumbar spine adduction throughout the whole kick, and vice versa. In opposition 
to increases in thoracolumbar spine adduction, hip external rotation at heel-strike and 
hip abduction at impact decrease. The decreased external hip rotation at heel-strike may 
be associated with movements of the thorax and pelvic segments that increase 
thoracolumbar spine adduction in earlier parts of the kick. Also, as the side-to-side tilt 
of the pelvis influences the magnitude of both thoracolumbar spine and hip 
abduction/adduction a relationship between the movements of these joints is perhaps 
logical. The specific variables included in factor three suggest that only hip 
abduction/adduction variable related to spine adduction was hip abduction at impact.  

Table 4: Summary of inter-relationships for kinematic variables in factor three. 

Column 1 
Variables increasing / decreasing together

Column 2 
Variables increasing / decreasing together 

& opposite to those in column 1 
Thoracolumbar spine adduction (thorax 
up on R, pelvis down on R) @ toe-off 

* Hip external transverse rotation @ heel-
strike 

Min thoracolumbar spine adduction 
(thorax up on R, pelvis down on R) 

* Hip abduction @ impact 

Thoracolumbar spine adduction (thorax 
up on R, pelvis down on R) @ heel-strike 

 

Max thoracolumbar spine adduction 
(thorax up on R, pelvis down on R) 

 

Thoracolumbar spine adduction (thorax 
up on R, pelvis down on R) @ impact 

 

* Variables loading more strongly on other factors 

Thoracolumbar spine extension angles dominate factor four (Table 5), where a 
decrease/increase in spine extension at toe-off is associated with a change at point of 
maximum extension (toe-off to heel-strike) and at heel-strike.  

Table 5: Summary of inter-relationships for kinematic variables in factor four. 

Column 1 
Variables increasing / decreasing 

together 

Column 2 
Variables increasing / decreasing together & 

opposite to those in column 1 
Hip extension @ heel-strike Peak thoracolumbar spine extension 
* Peak hip extension Thoracolumbar spine extension @ toe-off  
 Thoracolumbar spine extension @ heel-strike  
 Knee flexion / extension ROM in follow-through 
* Variables loading more strongly on other factors 
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The inter-relationships with the remaining variables suggest, that a decrease in 
thoracolumbar spine extension at toe-off, point of maximum, and at heel-strike is 
associated with an increase in hip extension at point of maximum (between toe-off and 
heel-strike) and at heel-strike.  

Increases in ball velocities were associated with decreased peak hip extension, hip 
extension at heel-strike and peak hip external rotation for factor five (Table 6). As peak 
hip extension and external rotation occur between toe-off and heel-strike, these 
associations suggest a decreased external rotation in the earlier part of the kick 
immediately followed by a shorter backswing of the kicking leg as a result of decreased 
peak hip extension are related to increases in ball velocities. A decrease in external hip 
rotation suggests a reduced rotation away from the intended flight of the ball in the early 
stages of the kick is related to increases in ball velocities and reductions in hip extension 
but external hip rotation variable only accounted for 17.7% of variance on this factor. 

Table 6: Summary of inter-relationships for kinematic variables in factor five. 

Column 1 
Variables increasing / decreasing 

together 

Column 2 
Variables increasing / decreasing together & 

opposite to those in column 1 
Resultant ball velocity Peak hip extension 
Horizontal ball velocity * Hip extension @ heel-strike 
Vertical ball velocity * Peak hip external rotation 
* Variables loading more strongly on other factors 

Variables relating to orientation of the thoracolumbar spine during the initial part of the 
kick dominate factor six (Table 7). The inter-relationships indicate that increased 
thoracolumbar spine transverse rotation (thorax to left, pelvis to right) at toe-off is 
associated with increases at peak (toe-off to heel-strike) and heel-strike. Increases in 
spine rotation in the first part of the kick are also seen to relate to increased hip 
abduction/adduction ROM in follow-through. Time of minimum thoracolumbar spine 
adduction (thorax up on R, pelvis down on R) occurs just after toe-off and decreases in 
association with increases in spine rotation variables. The greater the spine rotation at 
toe-off the closer to toe-off minimum spine adduction occurs.  

Table 7: Summary of inter-relationships for kinematic variables in factor six. 

Column 1 
Variables increasing / decreasing together

Column 2 
Variables increasing / decreasing together 

& opposite to those in column 1 
Peak thoracolumbar spine transverse 
rotation (thorax to L, pelvis to R) 

* Time of min thoracolumbar spine 
adduction (thorax up on R, pelvis down 
on R) 

Thoracolumbar spine transverse rotation 
(thorax to L, pelvis to R) @ toe-off 

 

Thoracolumbar spine transverse rotation 
(thorax to L, pelvis to R) @ heel-strike 

 

Hip abd / adduction ROM in follow-
through 

 

* Variables loading more strongly on other factors 
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For factor seven (Table 8), the inter-relationships indicates that the greater the knee 
flexion at toe-off the greater the knee flexion at impact (or vice versa), suggesting that a 
player who requires more or less knee flexion at impact may also be instructed to 
increase or decrease knee flexion (as appropriate) at toe-off. However, a decrease in 
knee flexion at toe-off indicates the players are taking a longer final stride prior to 
kicking leading to a relative increase in kick time allowing more time to swing the 
kicking leg backwards and to extend the knee at impact. An increase in knee flexion 
angles was associated with a delay in the time of maximum thoracolumbar spine 
adduction (thoracolumbar spine remained adducted the entire kick). The further the 
pelvic segment was orientated down to the right (thorax up on right, pelvis down on 
right) decreased the distance between the pelvis and the ground, and more knee flexion 
may have been required to clear the foot prior to impact.  

Table 8: Summary of inter-relationships for kinematic variables in factor seven. 

Column 1 
Variables increasing / decreasing together

Column 2 
Variables increasing / decreasing together 

& opposite to those in column 1 
Knee flexion @ toe-off Hip flexion @ impact 
Knee flexion @ impact Time min thoracolumbar spine adduction 

(thorax up on R, pelvis down on R) 
Time max thoracolumbar spine adduction 
(thorax up on R, pelvis down on R) 

Thoracolumbar spine transverse rotation 
(thorax to R, pelvis to L) @ impact 

* Knee flexion / extension ROM in 
follow-through 

Thoracolumbar spine flexion @ impact 

* Variables loading more strongly on other factors 

Smaller hip joint flexion and thoracolumbar spine flexion and transverse rotation values 
at impact corresponded to a kick with increased knee flexion at impact, indicating that 
the body will be in a more upright and more forward position. The time of minimum 
thoracolumbar spine adduction was inversely related to time of maximum 
thoracolumbar spine adduction and knee flexion. 

 

DISCUSSION 
Kicking is a complex three-dimensional movement and exploratory factor analysis has 
proved an effective technique for describing and summarising the inter-relationships 
between the spine and hip, knee and ankle joints of the kicking limb for a lofted instep 
kick. Interpretation of the seven factors has provided a practical insight into the 
complexities of the inter-relationships apparent in lofted instep kicking. 

Combined with knowledge of ideal characteristics of lofted instep kick performance, the 
identification of specific associations between similar or different joints in varying 
planes of motion is of potential benefit to a coach when attempting to improve a 
player’s technique. Interpretation of the factors has allowed the identification of similar 
variables that increase (or decrease) in association with each other for every 
measurement throughout the entire kick. If a coach requires a performer to increase or 
decrease the magnitude of a specific movement at some later point in the kick, knowing 
these associations indicates whether increases or decreases in the same type of 
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movement earlier in the kick is likely to contribute to the desired response. Knowledge 
of these associations will remove the need for the coach to make assumptions regarding 
the inter-relationships amongst movement patterns and stop erroneous feedback being 
provided in an attempt to correct the motion. 

Likewise, knowledge of positive and negative associations among variables for different 
joints and / or planes of motion, for similar and opposing phases of the kick, also 
identified in the preceding analysis, are potentially useful to a coach. These inter-
relationships indicate which other movements are likely to be affected if one particular 
aspect of the kicking action is altered. Having identified a critical aspect of kicking 
movement to alter, knowledge of other associated movement characteristics provides a 
coach and performer with the choice of more than one variable to focus on altering. As 
suggested in the interpretations of some factors, associations between different joints 
could be due to the influence of a common segment to both, such as the pelvic segment 
common to thoracolumbar spine and hip joints and thigh common to hip and knee 
joints, regardless of whether the motion was in the same plane. Further investigation is 
required to determine the mechanisms of these inter-relationships. 

Although factor analysis is a non-dependent statistical process, the interpretation of 
factor five indicated that decreases in peak hip extension just after toe-off and at heel-
strike (suggesting a shorter backswing of the kicking leg) are associated with increased 
ball velocities. Lees and Nolan (2002) reported increased hip (thigh-trunk) ROM for 
instep kicks under speed compared to accuracy conditions and Lees et al. (2005) found 
increases in hip (thigh-trunk) ROM to correlate positively with ball velocity in low 
maximum velocity instep kicking. The contradictions between the literature and the 
interpretation of factor five could be due to the differing aims of a lofted instep kick 
compared to a maximal velocity instep kick. In addition, the hip extension variables 
discussed did not load very high on factor five, peak hip extension and extension at 
heel-strike accounting for 23.8% and 20.3% of the variance respectively, suggesting 
they are of limited importance to the interpretation overall. Further investigation of 
these inter-relationships is warranted for different types of kick and with differing aims, 
such as maximal distance, speed or accuracy, to understand the associations between hip 
extension and ball velocity in lofted instep kicking. 

Similarly further analysis is recommended to explore the positive inter-relationship 
between knee flexion at toe-off and impact partially describing factor seven. An 
increase in knee flexion at toe-off indicates the players are taking a shorter final stride 
prior to kicking therefore, it is possible that a relatively shorter kick time will result in 
with less time to extend the knee in preparation for impact resulting in an increased 
knee flexion at impact. Isokawa and Lees (1988) suggested there might be two types of 
kicking patterns for a one-step instep kick. The first involving a large backswing and 
longer kicking time, the second a small backswing with the lower limb moved forward 
sharply by knee extension and shorter kicking time. The inter-relationships amongst 
variables in factor seven suggests two types of kicking action, although further 
investigation is needed on of expert technique to determine this definitively. 

In combination with the existing coaching literature and developments in defining an 
‘ideal’ kinematic model of a lofted instep kick, the inter-relationships among variables 
identified using factor analysis may be used to aid the development of coaching 
programmes and coaching points. Such knowledge proving particularly useful if the 
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kinematic variables of interest are difficult to observe or control by the performer, the 
developed coaching points could then be based on other variables that inter-relate with 
those deemed critical to performance. 

 

CONCLUSION 
The application of an exploratory factor analysis to 3D biomechanical data has revealed 
previously unknown inter-relationships among variables for different aspects of a lofted 
instep kick. Interpretation of the factors has shown in detail, the complex inter-
relationships that exist. An understanding of these relationships could prove useful to 
coaches when instructing, and maybe useful in the development of coaching 
programmes related to the lofted instep kick. 
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